
Semantic Symmetry in Transducers

Antonio Abu Nassar

Semantic Symmetry in Transducers

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Antonio Abu Nassar

Submitted to the Senate
of the Technion — Israel Institute of Technology

Iyyar 5782 Haifa May 2022

This research was carried out under the supervision of Dr. Shaull Almagor, in the Faculty of
Computer Science.

Some results in this thesis have been published as articles by the author and research collabora-
tors in conferences and journals during the course of the author’s doctoral research period, the
most up-to-date versions of which being:

Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-letter transducers, full
version. ArXiv, abs/2105.01512, 2022.

Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-letter transducers. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL
2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, 3:1–
3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

Notation and Abbreviations 3

1 Introduction 5

2 Preliminaries 9

3 Round Simulation and Round Equivalence 11

4 Deciding Fixed Round Simulation 15

5 Deciding Existential Round Simulation 19
5.1 Intuitive Overview . 19
5.2 Proof of Theorem 5.1 . 21
5.3 Lower Bounds for Existential Round Simulation 25

6 From Process Symmetry to Round Equivalence 27

7 The Simulation Mapping 31

8 Additional Notions of Symmetry and Simulation 35
8.1 Variations of Round Symmetry and Round Simulation 35
8.2 Symmetry over Infinite Words . 40

9 Conclusion and Open Questions 43

A PSPACE Hardness 45
A.1 Proof of Theorem 4.7 . 45
A.2 Proof of Theorem 5.10 . 47

B Variations of Round Simulation 49

Bibliography 51

Hebrew Abstract i

List of Figures

2.1 A nondeterministic automaton with one initial state q0 and one accepting state q2. 10

3.1 The transducer Ti for RR, initial state omitted. The input letters σ and ¬σ mean
all letters from 2P that, respectively, contain or do not contain σ. The labels are
written in red. 12

3.2 Transducers T1 (left) and T2 (right) illustrate the asymmetry in the definition of
round equivalence (see Example 3.3). 12

5.1 A flow diagram for the proof in Section 5.2. 20
5.2 A diagram for the proof structure of Lemma 5.8. 24
5.3 The transducers T1 (left) and T2 (right) for m = 3 in Example 5.11. The transition

s
ε−→ t in T2 means that the transition function from state s behaves identically

as from t. 25

6.1 Transducer T satisfying round symmetry w.r.t. π = (0 1) but not (0 2). 28
6.2 Transducer T π for the T in Example 6.2 and π = (0 1). 29

7.1 The transducers T1 (left) and T2 (right) in Example 7.1. The states of T2 in red,
green and blue manage the first, second and later rounds, respectively. 32

7.2 The transducers T1 (left) and T2 (right) in Example 7.2. 32

8.1 T exhibits Parikh, but not symbol-wise, round symmetry (see Example 8.2). . . 36
8.2 A Hasse diagram for a subset of the partial order on MOP2

k (α → β implies
α ≤ β). We show that all ordered pairs are strict. 38

8.3 The transducer T for Example 8.6. The transitions i ∈ σ and i /∈ σ mean all
letters from ΣI that, respectively, contain or do not contain i. 39

8.4 A complete Hasse diagram for the partial order on MOP2
k (α → β implies α ≤ β). 40

A.1 The transducer T1 in the proof of Theorem 4.7. 46
A.2 Every state and its 4 transitions in N (left) turn into 8 transitions in T2 (right).

All transitions not drawn in the right figure lead to q⊥, a sink state labelled ⊥. . 46
A.3 The transducer T1 in the proof of Theorem 5.10. 47
A.4 Every state and its 4 transitions in N (left) turn into 10 transitions in T2 (right).

All transitions not drawn in the right figure lead to q⊥, a sink state labelled ⊥. . 47

B.1 Transducers T1 (up) and T2 (down) in Example B.1, satisfying T1 ≺s,p
2 T2 and

T1 ≺p,s
2 T2, but T1 ̸≺s,s

2 T2. See Table B.1 for a table summarizing the possible
inputs and outputs for T1. 49

Abstract

Model checking is a verification paradigm for systems, where we are given a system and a specifi-
cation and we check whether every possible computation of the system satisfies the specification.

Often, systems over multiple processes exhibit some type of symmetry in their structure
or their behaviour. Symmetry is also commonly manifested in the specifications of multiple
process systems. When such symmetries are present in the system or the specification, they can
be exploited by the designer and the verification algorithm to alleviate some of the complexity
of model checking, as well as to gain insight into the behaviour of the system. For instance,
symmetric systems enable the designer to use only representative specifications where iteration
over the process identities was formerly needed. Thus, we want to decide whether a given system
or specification exhibits symmetry.

Symmetry is not a well-defined concept and might come in various forms, each capturing
a different characteristic behaviour. In this work, we focus on process symmetry, where every
process j has a corresponding input and output signal ij and oj , and the input and output
alphabets of the model are 2I and 2O respectively. Process symmetry addresses the scenario
where the identities of the processes may be scrambled – that is, permuted. For example, if the
input {i1, i2} is generated, the system might actually receive an input {i7, i4}. Then, a system
exhibits process symmetry if, intuitively, its outputs are permuted in a similar way to the inputs.
Unfortunately, deterministic systems that are process symmetric are extremely naive, as process
symmetry is too restrictive for them.

In our setting, each of the system and the specification are modelled by a finite-state machine
called a transducer. In addition, words are partitioned into rounds, and a transducer T is k-
round symmetric if for every permutation π of the signals and for every input word x, we can
scramble the letters within each round in π(x) to obtain x′, such that the output of T on x′ is
itself a scramble of the output of T on x. In other words, when T is round symmetric, there is a
way to scramble the permuted input, so that the resulting output is a scramble of the permuted
output (i.e. the “expected” output in process symmetry).

Round symmetry is semantic: it does not consider the structure, rather the behaviour of the
system. Round symmetry gives rise to the following decision problems:

⋆ In fixed round symmetry we are given a transducer T and k > 0, and we need to decide
whether T is k-round symmetric.

⋆ In existential round symmetry we are given a transducer T , and we need to decide whether
there exists k > 0 such that T is k-round symmetric.

Notice that round symmetry defines a property of a transducer. The way we approach the

1

decision problems is by first translating the definition of symmetry to a definition of a relation
between two transducers, called round simulation, then showing that round symmetry can be
reduced to round simulation, we solve it as such.

A transducer T2 k-round simulates transducer T1 if for every input word x, we can scramble
the letters within each round in x, such that the output of T2 on the scrambled word is itself a
scramble of the output of T1 on x. In fact, we consider a somewhat more elaborate setting, by
also allowing the inputs to T1 to be restricted to some regular language Λ.

The mapping between the input words for T1 and the scrambled input for T2 is called the
simulation mapping and is also studied in the continuation of this work.

Round symmetry and round simulation – the decision problems and their solutions, upper
and lower bounds and the simulation mapping – are the main contribution of this work. Addi-
tionally, several more notions of symmetry are presented and discussed, including variations of
round symmetry, and symmetry in the setting of infinite words.

We use tools and techniques from logic, algebra and automata theory.

2

Notation and Abbreviations

DCW deterministic co-Büchi automaton over words 41
DFA deterministic finite automaton 9
NFA nondeterministic finite automaton 9
PA Presburger arithmetic 21
RR Round Robin 12

3

4

Chapter 1

Introduction

Reactive systems interact with their environment by receiving inputs, corresponding to the state
of the environment, and sending outputs, which describe actions of the system. Finite-state re-
active systems are often modeled by transducers – finite-state machines over alphabets ΣI and
ΣO of inputs and outputs, respectively, which read an input letter in ΣI , and respond with an
output in ΣO. Such transducers are amenable to automatic verification of certain properties
(e.g., LTL model-checking), and are therefore useful in practice. Nonetheless, modeling com-
plex systems may result in huge transducers, which makes verification procedures prohibitively
expensive, and makes understanding the constructed transducers difficult.

A common approach to gain a better understanding of a transducer (or more generally, any
system) is simulation [Mil71], whereby a transducer T1 is simulated by a “simpler” transducer
T2 in such a way that model checking is easier on T2, and the correctness of the desired property
is preserved under the simulation. Usually, “simpler” means smaller, as in standard simula-
tion [Mil71] and fair simulation [HKR97], but one can also view e.g., linearization of concurrent
programs [HW87] as a form of simulation by a simpler machine.

In this work, we introduce and study new notions of simulation and of equivalence for
transducers, based on rounds: consider an input word x ∈ Σ∗

I whose length is k · R for some
k,R > 0. We divide the word into R disjoint infixes of length k, each called a round of w. We
then say that two words x, x′ ∈ ΣkR

I are k-round equivalent, denoted x′ ≍k x, if x′ is obtained
from x by permuting the letters within each round of x. For example abcabc and cbaacb are
3-round equivalent, since cba is a permutation of abc and so is acb. Example 3.1 presents a pair
of words that are 3-round equivalent but not 4-round equivalent. We now say that a transducer
T1 is k-round simulated by a transducer T2, denoted T1 ≺k T2, if for every1 input x ∈ ΣkR

I we can
find x′ ≍k x such that the outputs of T1 on x and T2 on x′, denoted y, y′ respectively, are also
round equivalent: y′ ≍k y. Intuitively, T1 ≺k T2 means that every behaviour of T1 is captured
by T2, up to permutations within each round. When we have both T1 ≺k T2 and T2 ≺k T1, we
say that they are k-round equivalent and denote this by T1 ≡k T2.

The benefit of k-round simulation is twofold. First, it may serve as an alternative simulation
technique for reducing the state space while maintaining the correctness of certain properties.
Second, we argue that k-round simulation is in and of itself a design concern. Indeed, in certain
scenarios, as follows, we can naturally design a transducer T2 that performs a certain task in

1Our formal definition allows to also restrict the input to some regular language Λ ⊆ Σ∗
I , see Chapter 3.

5

an ideal, but not realistic, way, and we want to check that an existing design, namely T1, is
simulated by this ideal. In particular, this is useful when dealing with systems that naturally
work in rounds, such as schedulers (e.g., Round Robin, cf. Example 3.2), arbiters, and other
resource allocation systems.

We now demonstrate both benefits by an example.

▶ Example 1.1. Consider a monitor M for the fairness of a distributed system with 10 processes
P = {1, . . . , 10}. At each timestep, M receives as input the ID of the process currently working.
The monitor then verifies that in each round of 10 steps, every process works exactly once. As
long as this holds, the monitor keeps outputting safe; otherwise, it outputs error.

M can be modeled by a transducer T1 that keeps track of the set of processes that have
worked in the current round. Thus, the transducer has at least 210 states, as it needs to keep
track of the subset of processes that have been seen.

It is not hard to see that T1 is 10-round simulated by an “ideal” transducer T2 which expects
to see the processes in the order 1, . . . , 10. This transducer needs roughly 10 states, as it only
needs to know the index of the next process it expects to see.

Now, suppose we want to verify some correctness property which is invariant to permutations
of the processes within each round of length 10, such as “if there is no error, then Process 3
works at least once every 20 steps”. Then we can verify this against the much smaller T2.

The notion of k-round simulation arises naturally in the setting of process symmetry. There,
the input and output alphabets are ΣI = 2I and ΣO = 2O respectively, where I = {i1, . . . , im}
and O = {o1, . . . , om} represent signals corresponding to m processes. Process symmetry ad-
dresses the scenario where the identities of the processes may be scrambled. For example, if
the input {i1, i2} is generated, the system might actually receive an input {i7, i4}. A system
exhibits process symmetry if, intuitively, its outputs are permuted in a similar way to the inputs.
Unfortunately, deterministic systems that are process symmetric are extremely naive, as process
symmetry is too restrictive for them. While this can be overcome using probabilistic systems,
as studied in [Alm20], it is also desirable to find a definition that is suited for deterministic
systems. As we show in Chapter 6, k-round simulation provides such a definition.

The main contributions of this work are as follows. We introduce the notion of k-round
simulation and k-round equivalence, and define two decision problems pertaining to them: in
fixed round simulation we need to decide whether T1 ≺k T2 for a given value of k, and in
existential round simulation we need to decide whether there exists some value of k for which
T1 ≺k T2 holds. In fact, we consider a somewhat more elaborate setting, by also allowing the
inputs to T1 to be restricted to some regular language Λ. We solve the first problem by reducing
it to the containment of two nondeterministic automata. For the second problem, things become
considerably more difficult, and the solution requires several constructions, as well as tools such
as Presburger arithmetic and Parikh’s theorem. In addition, we demonstrate the usefulness of
the definitions in relation to process symmetry.

Related Work

Simulation relations between systems are a well studied notion. We refer the reader to [CHVB18,
Chapter 13] and references therein for an exposition. The connection of our notion with standard

6

simulation is only up to motivation, as our measure is semantic: it does not directly relate to
the state space; instead, it refers to the behaviour of the system rather than its structure.

On the technical level, our work is closely related to commutative automata [BS73] and
jumping automata [FPS15; MZ12] — models of automata capable of reading their input in a
discontinuous manner, by jumping from one letter to another. Indeed, our notion of round
simulation essentially allows the simulating transducer to read the letters within rounds in a
discontinuous manner. This similarity is manifested implicitly in Section 5.2, where we encounter
similar structures as e.g. the commutative closure in [Hof20] (although the analysis here has a
different purpose).

Finally, the initial motivation for this work comes from process symmetry [Alm20; CEFJ96;
ES96; ID96; LNRS16]. We explore the connections in depth in Chapter 6.

Thesis Organization

The rest of this work is organized as follows. In Chapter 2 we present some basic definitions
used throughout our research. In Chapter 3 we introduce k-round simulation and equivalence,
define the relevant decision problems, and study some fundamental properties of the definitions.
In Chapter 4 we solve fixed round simulation, while developing some technical tools and char-
acterizations that are reused later. Chapter 5 is our main technical result, where we develop a
solution for existential round simulation. In particular, in Section 5.1 we give an overview of the
solution, before going through the technical details in Section 5.2. In Section 5.3 we give lower
bounds for the existential setting. In Chapter 6 we use round simulation to obtain a definition
of process symmetry for deterministic transducers, along with an algorithm for deciding it, and
in Chapter 7 we go into further detail about the mapping between rounds of transducers within a
simulation. Other notions of symmetry and simulation are considered in Chapter 8, and finally,
we discuss these variants and conclude with some open problems in Chapter 9.

7

8

Chapter 2

Preliminaries

Automata. A deterministic finite automaton (DFA) is A = ⟨Σ, Q, q0, δ, F ⟩, where Q is a finite
set of states, q0 ∈ Q is an initial state, δ : Q× Σ → Q is a transition function, and F ⊆ Q is the
set of accepting states.

The run of A on a word w = σ0 · σ2 · · ·σn−1 ∈ Σ∗ is a sequence of states q0, q1, . . . , qn such
that qi+1 = δ(qi, σi) for all 0 ≤ i < n. The run is accepting if qn ∈ F . A word w ∈ Σ∗ is
accepted by A if the run of A on w is accepting. The language of A, denoted L(A), is the
set of words that A accepts. We also consider nondeterministic finite automata (NFAs), where
δ : Q× Σ → 2Q and there can be multiple initial states. Then, a run of A on a word w ∈ Σ∗ as
above is a sequence of states q0, q1, . . . , qn such that q0 is an initial state and qi+1 ∈ δ(qi, σi) for
all 0 ≤ i < n. Analogously to the deterministic setting, the language of A is the set of words
that have an accepting run. We denote by |A| the number of states of A.

As usual, we denote by δ∗ the transition function lifted to words. For states q, q′ and w ∈ Σ∗,
we write q w−→A q′ if q′ ∈ δ∗(q, w). That is, if there is a run of A from q to q′ while reading w.

An NFA A can be viewed as a morphism from Σ∗ to the monoid BQ×Q of Q × Q Boolean
matrices, where we associate with a letter σ ∈ Σ its type τA(σ) ∈ BQ×Q defined by (τA(σ))q,q′ = 1
if q σ−→A q′, and (τA(σ))q,q′ = 0 otherwise. We lift the definition of types to Σ∗ by defining, for a
word w = σ1 · · ·σn ∈ Σ∗, its type as τA(w) = τA(σ1) · · · τA(σn) where the concatenation denotes
Boolean matrix product. It is easy to see that (τA(w))q,q′ = 1 iff q

w−→A q′. For example, the
types of the letters a and b in the automaton in Figure 2.1 are the 3 × 3 matrices

τA(a) =

q0 q1 q2

q0

q1

q2

0 1 0
0 0 0
0 0 1

 , τA(b) =

q0 q1 q2

q0

q1

q2

0 0 0
0 0 1
0 0 1

 ,

and the type of the word w = ab in the transducer in Figure 2.1 is the matrix

τA(w) =

q0 q1 q2

q0

q1

q2

0 0 1
0 0 0
0 0 1

 = τA(a) · τA(b).

9

q0

start

q1 q2
a b

a, b

Figure 2.1: A nondeterministic automaton with one initial state q0 and one accepting state q2.

Transducers. Consider two sets ΣI and ΣO representing input and output alphabets, respec-
tively. A ΣI/ΣO transducer is T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩ where Q, q0 ∈ Q, and δ : Q × ΣI → Q

are as in a DFA, and ℓ : Q → ΣO is a labelling function on the states. For a word w ∈ Σ∗
I ,

consider the run ρ = q0, . . . , qn of T on w. We define its output ℓ(ρ) = ℓ(q1) · · · ℓ(qn) ∈ Σ∗
O, and

we define the output of T on w to be T (w) = ℓ(ρ). Observe that we ignore the labelling of the
initial state in the run, so that the length of the output matches that of the input.

Words and rounds. Consider a word w = σ0 · · ·σn−1 ∈ Σ∗. We denote its length by |w|, and
for 0 ≤ i ≤ j < |w| we define w[i : j] = σi · · ·σj . For k > 0, if |w| = kR for some R ∈ N, then
for every 0 ≤ r < R we refer to w[rk : r(k+ 1) − 1] as the r-th round in w (of length k), and we
write w = γ0 · · · γR−1 where γr is the r-th round. We emphasize that k indicates the length of
each round, not the number of rounds.

In particular, throughout this work we consider words (x, y) ∈ (Σk
I × Σk

O)∗ and their rounds
of length k. In such cases, we sometimes use the natural embedding of (Σk

I ×Σk
O)∗ in (ΣI ×ΣO)∗

and in Σ∗
I × Σ∗

O, and refer to these sets interchangeably.

Parikh vectors and permutations. Consider an alphabet Σ. For a word w ∈ Σ∗ and a
letter σ ∈ Σ, we denote by #σ(w) the number of occurrences of σ in w. The Parikh map
P : Σ∗ → NΣ maps every word w ∈ Σ∗ to a Parikh vector P(w) ∈ NΣ, where P(w)(σ) = #σ(w).
We lift this to languages by defining, for L ⊆ Σ∗, P(L) = {P(w) : w ∈ L}.

For p ∈ NΣ (in the following we consistently denote vectors in NΣ by bold letters) we write
|p| =

∑
σ∈Σ p(σ). In particular, for a word w ∈ Σ∗ we have |P(w)| = |w|.

By Parikh’s theorem [Par66], for every NFA A we have that P(L(A)) is a semilinear set
– that is, a finite union of sets of the form { p + λ1s1 + . . .+ λ1sm | λ1, . . . , λm ∈ N } where
p, s1, . . . , sm ∈ Nd.

Consider words x, y ∈ Σ∗. We say that x is a permutation of y if P(x) = P(y) (indeed, in
this case y can be obtained from x by permuting its letters). In particular this implies |x| = |y|.

10

Chapter 3

Round Simulation and Round
Equivalence

Consider two k-round words x, y ∈ ΣkR with the same number of rounds R, and denote their
rounds by x = α0 · · ·αR−1 and y = β0 · · ·βR−1. We say that x and y are k-round equivalent,
denoted x ≍k y (or x ≍ y, when k is clear from context)1, if for every 0 ≤ r < R we have that
P(αr) = P(βr). That is, x ≍ y iff the r-th round of y is a permutation of the r-th round of x,
for every r. Indeed, ≍ is an equivalence relation.

▶ Example 3.1 (Round-equivalence for words). Consider the words x = abaabbabbbaa and y =
baabbaabbaba over the alphabet Σ = {a, b}. Looking at the words as 3-round words, one can see
in Table 3.1 that rounds of length 3 in y are all permutations of those in x, which gives x ≍3 y.
However, looking at the rounds of length 4 of x, y, the number of occurrences of b already in the
first round of x and of y is different, so x ̸≍4 y, as illustrated in Table 3.2.

Table 3.1: x and y are 3-round equivalent

x aba abb abb baa
y baa bba abb aba

Table 3.2: x and y are not 4-round equivalent

x abaa bbab bbaa
y baab baab baba

Let ΣI and ΣO be input and output alphabets, let Λ ⊆ Σ∗
I be a regular language, and let

k > 0. Consider two ΣI/ΣO transducers T1 and T2. We say that T2 k-round simulates T1

restricted to Λ, denoted T1 ≺k,Λ T2, if for every k-round word x ∈ Λ there exists a k-round word
x′ ∈ Σ∗

I such that x ≍k x
′ and T1(x) ≍k T2(x′).

Intuitively, T1 ≺k,Λ T2 if for every input word x ∈ Λ, we can permute each round of length
k in x to obtain a new word x′, such that the outputs of T1 on x and of T2 on x′ are k-round
equivalent. Note that the definition is not symmetric: the input x for T1 is universally quantified,
while x′ is chosen according to x. We illustrate this in Example 3.3.

If T1 ≺k,Λ T2 and T2 ≺k,Λ T1 we say that T1 and T2 are k-round equivalent restricted to Λ,
denoted T1 ≡k,Λ T2. In the special case where Λ = Σ∗

I (i.e., when we require the simulation to
hold for every input), we omit it from the subscript and write T1 ≺k T2.

1Conveniently, our symbol for round equivalence is a rounded equivalence.

11

▶ Example 3.2 (Round Robin). We consider a simple version of the Round Robin (RR) scheduler
for three processes P = {0, 1, 2}. In each time step, the scheduler outputs either a singleton set
containing the ID of the process whose request is granted, or an empty set if the process whose
turn it is did not make a request. Depending on the ID i ∈ {0, 1, 2} of the first process, we
model the scheduler as a 2P/2P transducer Ti =

⟨
2P , 2P , Q, q(i−1)%3, δ, ℓ

⟩
depicted in Figure 3.1,

where % is the mod operator, Q = {q0, q1, q2, q
′
0, q

′
1, q

′
2}, δ(qi, σ) = q(i+1)%3 if i + 1 ∈ σ and

δ(qi, σ) = q′
(i+1)%3 otherwise, ℓ(qi) = {i} and ℓ(q′

i) = ∅.

q0/{0} q1/{1} q2/{2}

q′
0/∅ q′

1/∅ q′
2/∅

1

¬1

2

¬2

0
¬0

1

¬1

2

¬2

0
¬0

Figure 3.1: The transducer Ti for RR, initial state omitted. The input letters σ and ¬σ mean
all letters from 2P that, respectively, contain or do not contain σ. The labels are written in red.

Technically, the initial state changes the behaviour of Ti significantly (e.g. T0({0}{2}{1}) =
{0}∅∅ whereas T1({0}{2}{1}) = ∅{2}∅). Conceptually, however, changing the initial state does
not alter the behaviour, as long as the requests are permuted accordingly. This is captured by
round equivalence, as follows.

We argue that, if we allow permutation of the input letters, then the set of processes whose
requests are granted in each round is independent of the start state. This is equivalent to saying
T0 ≡k Tj for j ∈ {1, 2}, which indeed holds: if j = 1 then we permute all rounds of the form
σ0σ1σ2 to σ1σ2σ0, and similarly if j = 2 then we permute all rounds to σ2σ0σ1. It is easy to see
that the run of Ti on the permuted input grants outputs that k-round equivalent to the output
of T0 on the non-permuted input.

In Example 3.2, the transducers satisfied not only round simulation, but also round equiva-
lence. We now show that this is not always the case for simulating transducers.

▶ Example 3.3 (Round simulation is not symmetric). Consider the ΣI/ΣO transducers T1 and T2

over the alphabet ΣI = {a, b} and ΣO = {0, 1}, depicted in Figure 3.2. We claim that T1 ≺2 T2

1 0

0 1

1
b

a a

b

a, b

a

b

a, b

0 1

0 1

0
b

a a

b

a, b

a

b

a, b

Figure 3.2: Transducers T1 (left) and T2 (right) illustrate the asymmetry in the definition of
round equivalence (see Example 3.3).

but T2 ̸≺2 T1. Starting with the latter, observe that T2(ab) = 00, but T1(ab) = T1(ba) = 01.
Since 00 ̸≍2 01, we have T2 ̸≺2 T1.

12

We turn to show that T1 ≺2 T2. Observe that for every input word of the form x ∈ (ab+ba)m,
we have T1(x) = (01)m, and x ≍2 (ba)m. So in this case we have that T2((ba)m) = (10)m ≍2

(01)m. Next, for x ∈ (ab + ba)m · bb · w for some w ∈ Σ∗
I we have T1(x) = (01)m011|w| and

x ≍2 (ba)m · bb · w, for which T2((ba)m · bb · w) = (01)m101|w| ≍2 T1(x). The case where
x ∈ (ab+ ba)m · aa · w is handled similarly. We conclude that T1 ≺2 T2.

Round simulation and round equivalence give rise to the following decision problems:

⋆ In fixed round simulation (resp. fixed round equivalence) we are given transducers T1, T2,
an NFA for the language Λ, and k > 0 in unary, and we need to decide whether T1 ≺k,Λ T2

(resp. whether T1 ≡k,Λ T2).

⋆ In existential round simulation (resp. existential round equivalence) we are given trans-
ducers T1, T2 and an NFA for the language Λ, and we need to decide whether there exists
k > 0 such that T1 ≺k,Λ T2 (resp. T1 ≡k,Λ T2).

In the following we identify Λ with an NFA (or DFA) for it, as we do not explicitly rely on its
description.

We start by showing that deciding equivalence (both fixed and existential) is reducible, in
polynomial time, to the respective simulation problem.

▶ Lemma 3.4. Fixed (resp. existential) round equivalence is Turing reducible in polynomial
time to fixed (resp. existential) round simulation.

Proof. First, we can clearly reduce fixed round equivalence to fixed round simulation: given an
algorithm that decides, given T1, T2, Λ and k > 0, whether T1 ≺k,Λ T2, we can decide whether
T1 ≡k,Λ T2 by using it twice to decide whether both T1 ≺k,Λ T2 and T1 ≺k,Λ T2 hold.

A slightly more careful examination shows that the same approach can be taken to reduce
existential round equivalence to existential round simulation, using the following observation: if
T1 ≺k,Λ T2, then for every m ∈ N it holds that T1 ≺mk,Λ T2. Indeed, we can simply group every
m rounds of length k and treat them as a single round of length mk.

Now, given an algorithm that decides, given T1, T2 and Λ, whether there exists k > 0 such
that T1 ≺k,Λ T2, we can decide whether T1 ≡k,Λ T2 by using the algorithm twice to decide
whether there exists k1 such that T1 ≺k1,Λ T2 and k2 such that T2 ≺k2,Λ T1 hold. If there are no
such k1, k2, then clearly T1 ̸≡k,Λ T2. However, if there are such k1, k2, then by the observation
above we have T1 ≡k1k2,Λ T2 (we can also take lcm(k1, k2) instead of k1k2). ◀

By Lemma 3.4, for the purpose of upper-bounds, we focus henceforth on round simulation.

13

14

Chapter 4

Deciding Fixed Round Simulation

In this chapter we show decidability of fixed round simulation (and, by Lemma 3.4, fixed round
equivalence). The tools we develop will be used in Chapter 5 to handle the existential variant.

Let ΣI and ΣO be input and output alphabets. Consider two ΣI/ΣO transducers T1 and
T2, and let Λ ⊆ Σ∗

I and k > 0. In order to decide whether T1 ≺k,Λ T2, we proceed as follows.
First, we cast the problem to a problem about deterministic automata. Then, we translate
rounds into letters, by working over the alphabets Σk

I and Σk
O. We construct an NFA, dubbed

the permutation closure, for each transducer T , that captures the behaviour of T on words and
their permutations. Intuitively, the NFA takes as input a word (x, y) ∈ (Σk

I × Σk
O)∗, guesses

a round equivalent word x′ ≍ x, and verifies that T (x′) ≍ T (x). We then show that round
simulation amounts to deciding the containment of these NFAs.

We now turn to give the details of the construction of these NFAs.

The trace DFA. Consider a transducer T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩, we define its trace DFA
Tr(T) = ⟨ΣI × ΣO, Q ∪ {q⊥}, q0, η,Q⟩ where for q ∈ Q and (σ, σ′) ∈ ΣI × ΣO we define
η(q, (σ, σ′)) = δ(q, σ) if T q(σ) = σ′ and η(q, (σ, σ′)) = q⊥ otherwise. q⊥ is a rejecting sink.

Tr(T) captures the behaviour of T in that L(Tr(T)) = { (x, y) ∈ (ΣI × ΣO)∗ | T (x) = y }.

The permutation closure NFA. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let k > 0.
We obtain from N an NFA Permk(N) =

⟨
Σk

I × Σk
O, S, s0, µ, F

⟩
where the alphabet is Σk

I × Σk
O,

and the transition function µ is defined as follows. For a letter (α, β) ∈ Σk
I × Σk

O and a state
s ∈ S, we think of (α, β) as a word in (ΣI × ΣO)∗. Then we have

µ(s, (α, β)) =
∪{

η∗(s, (α′, β′))
∣∣ P(α′) = P(α) ∧ P(β) = P(β′)

}
. (4.1)

That is, upon reading (α, β), Permk(N) can move to any state s′ that is reachable in N from s

by reading a permutation of α, β (denoted α′, β′). Recall that for two words x, x′ we have that
x ≍k x

′ if for every two corresponding rounds α, α′ in x and x′ we have P(α) = P(α′). Thus,
we have the following.

▶ Observation 4.1. In the notations above, it holds that L(Permk(N)) = {(x, y) ∈ Σ∗
I × Σ∗

O |
∃x′ ≍k x, y

′ ≍k y, (x′, y′) ∈ L(N) ∧ |x| = |y| = kR for some R ∈ N}.

15

Since the transition function of Permk(N) is only defined using permutations of its input letters,
we have the following property, which we refer to as permutation invariance:

▶ Observation 4.2 (Permutation invariance). For every state s ∈ S and letters (α, β), (α′, β′) ∈
Σk

I × Σk
O, if P(α) = P(α′) and P(β) = P(β′) then µ(s, (α, β)) = µ(s, (α′, β′)).

Given a transducer T , we apply the permutation closure to the trace DFA of T . In order to
account for the restriction given by Λ ⊆ Σ∗

I , we identify it with Λ ⊆ Σ∗
I × Σ∗

O. We remind that
Λ denotes both a language and a corresponding NFA (or DFA), so what this means is that the
NFA, reading input from Σ∗

I × Σ∗
O, simply ignores the second component.

▶ Lemma 4.3. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1) ∩ Λ)

(where the intersection implies the product NFA construction) and Ak
2 = Permk(Tr(T2)), then

L(Ak
1) = { (x, y) ∈ Σ∗

I × Σ∗
O | ∃x′ ≍k x, T1(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N ∧ x′ ∈ Λ } ,

L(Ak
2) = { (x, y) ∈ Σ∗

I × Σ∗
O | ∃x′ ≍k x, T2(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N } .

Proof. Recall that Tr(T) accepts a word (x′, y′) iff T (x′) = y′. The claim then follows from Ob-
servation 4.1, by replacing the expression y ≍ y′ ∧ (x′, y′) ∈ L(Tr(T)) with the equivalent
expression T (x′) ≍k y. ◀

We now reduce round simulation to the containment of permutation closure NFAs.

▶ Lemma 4.4. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1) ∩ Λ)

and Ak
2 = Permk(Tr(T2)), then T1 ≺k,Λ T2 iff L(Ak

1) ⊆ L(Ak
2).

Proof. For the first direction, assume T1 ≺k,Λ T2, and let (x, y) ∈ L(Ak
1). By Lemma 4.3, x and

y are k-round words, and there exists a word x′ ∈ Λ such that x ≍ x′ and T1(x′) ≍ y. Since
T1 ≺k,Λ T2, then applying the definition on x′ yields that there exists a k-round word x′′ such
that x′ ≍ x′′ and such that T1(x′) ≍ T2(x′′). Since ≍ is an equivalence relation, it follows that
x ≍ x′′ and T2(x′′) ≍ y, so again by Lemma 4.3 we have (x, y) ∈ L(Ak

2).
Conversely, assume L(Ak

1) ⊆ L(Ak
2), we wish to prove that for every k-round word x ∈ Λ

there exists a word x′ such that x ≍ x′ and T1(x) ≍ T2(x′). Let x ∈ Λ be a k-round word, and
let y = T1(x), then clearly (x, y) ∈ L(Ak

1) ⊆ L(Ak
2) (since x ≍ x, T1(x) = y ≍ y and x ∈ Λ).

By Lemma 4.3, there exists x′ such that x ≍ x′ and T2(x′) ≍ y = T1(x), so T2(x′) ≍ T1(x), thus
concluding the proof. ◀

▶ Remark 4.5. The proof of Lemma 4.4 does not require taking the permutation closure of
Tr(T1) ∩ Λ, and it could be simplified by using instead of Ak

1, the augmentation of Tr(T1) ∩ Λ
to k-round words. However, such an NFA is not permutation invariant, which is key to our
solution for existential round simulation. Since this simplification does not reduce the overall
complexity, we use a uniform setting for both solutions.

Lemma 4.4 shows that deciding fixed round equivalence amounts to deciding containment of
NFAs. By analyzing the size of the NFAs, we obtain the following.

▶ Theorem 4.6. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is in PSPACE.

16

Proof. Let Ak
1 = Permk(Tr(T1) ∩ Λ) and Ak

2 = Permk(Tr(T2)). By Lemma 4.4, deciding whether
T1 ≺k,Λ T2 amounts to deciding whether L(Ak

1) ⊆ L(Ak
2). Looking at the dual problem, recall

that for two NFAs N1,N2 we have that L(N1) ̸⊆ L(N2) iff there exists w ∈ L(N2) \L(N1) with
|w| ≤ |N1| · 2|N2| (this follows immediately by bounding the size of an NFA for L(N1) ∩L(N2)).
Thus, we can decide whether L(Ak

1) ⊆ L(Ak
2) by guessing a word w over Σk

I × Σk
O of single-

exponential length (in the size of Ak
1 and Ak

2), and verifying that it is accepted by Ak
1 and not

by Ak
2.

Observe that to this end, we do not explicitly construct Ak
1 nor Ak

2, as their alphabet size is
exponential. Rather, we evaluate them on each letter of w based on their construction from T .
At each step we keep track of a counter for the length of w, a state of Ak

1, and a set of states
of Ak

2. Since the number of states in Ak
1 and Ak

2 is the same as that of T1 and T2, this requires
polynomial space.

By Savitch’s theorem we have that coNPSPACE = PSPACE, and the proof is concluded.
◀

We now establish a PSPACE-hardness lower bound, thus concluding that the problem is
PSPACE-complete. In fact, we show a lower bound for round equivalence. Note that a priori,
this does not entail a lower bound for round simulation by Lemma 3.4, since the reduction
there is a Turing reduction. However, our PSPACE-hardness proof actually explicitly shows the
hardness of both simulation and equivalence.

▶ Theorem 4.7. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2, is
PSPACE-hard, even for k = 2 and Λ of constant size (given as a 4-state DFA).

Proof sketch. We show a reduction from the universality problem for NFAs over alphabet {0, 1}
where all states are accepting and the degree of nondeterminism is at most 2. See Appendix A
for a proof of PSPACE-hardness of this problem and for the full reduction.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and σ ∈ {0, 1}.
Set Λ = (ab + cd)∗. We construct two transducers T1 and T2 over input and output alphabets
ΣI = {a, b, c, d} and ΣO = {⊤,⊥} such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.

Intuitively, our reduction encodes {0, 1} over {a, b, c, d} by identifying 0 with ab and with
ba, and 1 with cd and with dc. Then, T1 keeps outputting ⊤ for all inputs in Λ, thus mimicking
a universal language in {0, 1}∗ (see Figure A.1), whereas T2 is obtained by replacing every
nondeterministic transition of N on e.g. 0 by two deterministic branches, on e.g. ab and ba

(see Figure A.2). Hence, when we are allowed to permute ab and ba by round equivalence, we
capture the nondeterminism of N .

We show that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2 by showing that permuting a word w ∈ Λ
essentially amounts to choosing an accepting run of N on the corresponding word in {0, 1}∗. ◀

▶ Corollary 4.8. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is PSPACE-complete.

17

18

Chapter 5

Deciding Existential Round
Simulation

In Chapter 4, we established a method for deciding k-round simulation for a given k. This case
is for when the systems in question exhibit an apparent symmetry with a round length that a
developer can guess; such as RR where the round length is the number of processes involved.
However, k is not necessarily given in the general sense.

We turn to solve existential round simulation. That is, given T1, T2 and Λ, we wish to decide
whether there exists k > 0 such that T1 ≺k,Λ T2. By Lemma 4.4, this is equivalent to deciding
whether there exists k > 0 such that L(Ak

1) ⊆ L(Ak
2), as defined therein.

Recall that solving the decision problems of round simulation will aid us in solving the initial
problem of round symmetry, which gave the motivation for this work. The transition between
the problems is explained in Chapter 6.

5.1 Intuitive Overview

We start with an intuitive explanation of the solution and its challenges. For simplicity, assume
for now Λ = Σ∗

I , so it can be ignored. The overall approach is to present a practical method
for hunting k: in Theorem 5.1, the main result of this chapter, we give an upper bound on
the minimal k > 0 for which T1 ≺k T2, rendering the search space finite. In order to obtain
this bound, we proceed as follows. Observe that for a transducer T and for 0 < k ̸= k′ the
corresponding permutation closure NFAs Permk(Tr(T)) and Permk′(Tr(T)) are defined on the
same state space, but differ by their alphabet (Σk

I × Σk
O vs Σk′

I × Σk′
O). Thus, by definition,

these NFAs obtained from an increasing round length form infinitely many distinct automata.
Nonetheless, there are only finitely many possible types of letters (indeed, at most |BQ×Q| =
2|Q|2). Therefore, there are only finitely many type profiles for NFAs – that is, the set of letter
types occurring in the NFA – up to multiplicities of the letter types.

Recall that by Lemma 4.4, we have that T1 ≺k T2 iff L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))).
Intuitively, one could hope that if Permk(Tr(Ti)) and Permk′(Tr(Ti)) have the same type pro-
file, for each i ∈ {1, 2}, then L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))) iff L(Permk′(Tr(T1))) ⊆
L(Permk′(Tr(T2))). Then, if one can bound the index k after which no further type profiles are
encountered, then the problem reduces to checking a finite number of containments.

19

Unfortunately, this is not the case, the reason being that the mapping of letters induced by
the equal type profiles Permk(Tr(T1)) and Permk′(Tr(T1)) may differ from the mapping induced by
Permk(Tr(T2)) and Permk′(Tr(T2)), and thus one cannot translate language containment between
the two pairs. We overcome this difficulty, however, by working from the start with product
automata that capture the structure of both T1 and T2 simultaneously, and thus unify the letter
mapping. We dub them redundant product automata for their apparent redundancy.

We are now left with the problem of bounding the minimal k after which no new type profiles
appear. In order to provide this bound, we show that for every type profile, the set of indices
in which it occurs is semilinear. Then, by finding a bound for each type profile, we obtain the
overall bound. The main result of this chapter is the following.

▶ Theorem 5.1. Given transducers T1, T2 and Λ, we can effectively compute K0 > 0 such that
if T1 ≺k,Λ T2 for some k ∈ N, then T1 ≺k′,Λ T2 for some k′ ≤ K0.

Which by Lemma 4.4 immediately entails the following.

▶ Corollary 5.2. Existential round simulation is decidable.

We prove Theorem 5.1 in Section 5.2, organized as follows. We start by lifting the definition
of types in an NFA to Parikh vectors, and show how these relate to the NFA (in Lemma 5.3).
We then introduce Presburger arithmetic and its relation to Parikh’s theorem. In Lemma 5.4
we show that the set of Parikh vectors that share a type τ is definable in Presburger arithmetic,
which provides the first main step towards our bound.

We then proceed to define the redundant product automata mentioned above, which serve
to unify the types between T1 and T2. In Observations 5.5 and 5.6 we formalize the connection
of these products to the transducers T1 and T2. Then, we formally define the type profiles and
prove in Lemma 5.7 that they exhibit a semilinear behaviour. Finally, in Lemma 5.8 we prove
that when two redundant product automata have the same type profile, then the containment
mentioned above can be shown. Combining these results, we obtain Theorem 5.1.

A flow diagram for the proof is illustrated in Figure 5.1.

trace DFA

redundant products

types of Parikh vectors

type profiles

defined by PA

D2 = Tr(T2)

B1,B2 = D1 × D2

D1 = Tr(T1) ∩ Λ

τB1(p,o) = τB2(p,o)

Υ(B1, k) = Υ(B2, k)

ΘT (k)

if ΘT (k) ∧ ΘT (k′) then T1 ≺k T2 iff T1 ≺k′ T2

Figure 5.1: A flow diagram for the proof in Section 5.2.

20

5.2 Proof of Theorem 5.1

Type matrices of Parikh vectors. Consider the alphabet Σk
I × Σk

O for some k > 0. Recall
that by Observation 4.2, permutation closure NFAs are permutation invariant, and from Chap-
ter 2, the type of a word in an NFA is the transition matrix it induces. In particular, for
permutation invariant NFAs, two letters (α, β), (α′, β′) ∈ Σk

I × Σk
O with P(α) = P(α′) and

P(β) = P(β′) have the same type.
Following this, we now lift the definition of types to Parikh vectors. Consider an NFA

N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let p ∈ NΣI ,o ∈ NΣO be Parikh vectors with |p| = |o| = k. We
define the type τN (p,o) ∈ BS×S to be τPermk(N)(α, β) where (α, β) ∈ Σk

I × Σk
O are such that

P(α) = p and P(β) = o. By permutation invariance, this is well-defined, i.e. is independent of
the choice of α and β.

Note that we use different automata to extract the type of words of different lengths. We
obtain a more uniform description as follows.

▶ Lemma 5.3. In the notations above, for every s1, s2 ∈ S, we have that (τN (p,o))s1,s2 = 1 iff
there exists (α, β) ∈ Σk

I × Σk
O with P(α) = p and P(β) = o such that s1

(α,β)−→Permk(N) s2.

Proof. By the definitions preceding the lemma, we have that τN (p,o) = τPermk(N)(α′, β′) for
some (α′, β′) ∈ Σk

I × Σk
O are such that P(α′) = p and P(β′) = o. According to the transition

function of Permk(N) (as defined in Chapter 4), for every s1, s2 ∈ S we have that s1
(α′,β′)−→ Permk(N)

s2 iff there exist (α, β) ∈ Σk
I × Σk

O with P(α) = P(α′) = p and P(β) = P(β′) = o such that
s1

(α,β)−→N s2. Since the type encodes the reachable pairs of states, this concludes the proof. ◀

Presburger arithmetic. The first ingredient in the proof of Theorem 5.1 is to characterize
the set of Parikh vectors whose type is some fixed matrix τ ∈ BQ×Q. For this characterization,
we employ the first-order theory of the naturals with addition and order Th(N, 0, 1,+, <,=),
commonly known as Presburger arithmetic (PA). We do not give a full exposition of PA but
refer the reader to [Haa18] (and references therein) for a survey. In the following we briefly cite
the results we need.

For our purposes, a PA formula φ(x1, . . . , xd), where x1, . . . , xd are free variables, is evaluated
over Nd, and defines the set

{
(a1, . . . , ad) ∈ Nd

∣∣∣ (a1, . . . , ad) |= φ(x1, . . . , xd)
}

. For example,
the formula φ(x1, x2) := x1 < x2 ∧ ∃y.x1 = 2y defines the set

{
(a, b) ∈ N2 ∣∣ a < b ∧ a is even

}
.

A fundamental result about PA is that the definable sets in PA are exactly the semilinear
sets. In particular, Parikh’s theorem states that for every NFA A, P(L(A)) is PA definable. In
fact, by [VSS05], one can efficiently construct a linear-sized existential PA formula for P(L(A)).
We can now show that the set of Parikh vectors whose type is τ is PA definable.

▶ Lemma 5.4. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and a type τ ∈ BS×S, then the set{
(p,o) ∈ NΣI × NΣO

∣∣∣ τN (p,o) = τ
}

is PA definable.

Proof. Let τ ∈ BS×S , and consider a Parikh vector (p,o) ∈ NΣI × NΣO with k = |p| = |o|.
By Lemma 5.3, we have that τN (p,o) = τ iff the following holds for every s1, s2 ∈ S: we
have τs1,s2 = 1 iff there exists a letter (α, β) ∈ Σk

I × Σk
O such that P(α) = p,P(β) = o, and

s1
(α,β)−→N s2.

21

Consider s1, s2 ∈ S and define N s1
s2 to be the NFA obtained from N by setting the initial

state to be s1 and a single accepting state s2. Then, we have s1
(α,β)−→N s2 iff (α, β) ∈ L(N s1

s2).
Thus, τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff there exists a word (α, β)

with P(α′) = p and P(β′) = o such that (α, β) ∈ L(N s1
s2). Equivalently, we have τN (p,o) = τ

iff for every s1, s2 ∈ S it holds that τs1,s2 = 1 iff (p,o) ∈ P(L(N s1
s2)).

By Parikh’s theorem, for every s1, s2 ∈ S we can compute a PA formula ψs1,s2 such that
(p,o) |= ψs1,s2 iff (p,o) ∈ P(L(N s1

s2)). Now we can construct a PA formula Ψτ such that
τN (p,o) = τ iff (p,o) |= Ψτ , as follows:

Ψτ :=
∧

s1,s2 : τs1,s2 =1
ψs1,s2 ∧

∧
s1,s2 : τs1,s2 =0

¬ψs1,s2 .

Finally, observe that Ψτ defines the set in the premise of the lemma, so we are done. ◀

The redundant product construction. As mentioned in Section 5.1, for the remainder of
the proof we want to reason about the types of Permk(Tr(T1) ∩ Λ) and Permk(Tr(T2)) simulta-
neously. In order to so, we present an auxiliary product construction.

Let T1, T2 be transducers, Λ ⊆ Σ∗
I be given by an NFA, and let D1 = Tr(T1) ∩ Λ and

D2 = Tr(T2). We now consider the product automaton of D1 and D2, and endow it with
two different acceptance conditions, capturing that of D1 and D2, respectively. Formally, for
i ∈ {1, 2}, denote Di =

⟨
ΣI × ΣO, Si, s

i
0, ηi, Fi

⟩
, then the product automaton is defined as

Bi =
⟨
ΣI × ΣO, S1 × S2, (s1

0, s
2
0), η1 × η2, Gi

⟩
, where G1 = F1 × Q2 and G2 = Q1 × F2, and

η1 × η2 denotes the standard product transition function, namely η1 × η2((s1, s2), (σ, σ′)) =
(η1(s1, (σ, σ′)), η2(s2, (σ, σ′))). Thus, Bi tracks both D1 and D2, but has the same acceptance
condition as Di. This seemingly “redundant” product construction has the following important
properties, which are crucial for our proof:

▶ Observation 5.5. In the notations above, we have the following:

1. L(B1) = L(D1) and L(B2) = L(D2).

2. For every letter (σ, σ′) ∈ ΣI × ΣO, we have τB1(σ, σ′) = τB2(σ, σ′).

Indeed, Item 1 follows directly from the acceptance condition, and Item 2 is due to the
identical transition function of B1 and B2.

By Observation 4.1, L(Permk(Di)) depends only on L(Di). We thus have the following.

▶ Observation 5.6. The following holds for every k > 0:

1. L(Permk(B1)) = L(Permk(Tr(T1) ∩ Λ)).

2. L(Permk(B2)) = L(Permk(Tr(T2))).

Type profiles. We now consider the set of types induced by the redundant product automata
B1 and B2 on Parikh vectors of words of length k. By Item 2 of Observation 5.5, it is enough to
consider B1.

22

For k > 0, we define the k-th type profile of B1 to be the set of all types of Parikh
vectors (p,o) with |p| = |o| = k that are induced by B1; i.e. it is the set Υ(B1, k) ={
τB1(P(α),P(β))

∣∣∣ (α, β) ∈ Σk
I × Σk

O

}
. Clearly, there is only a finite number of type profiles,

as Υ(B1, k) ⊆ BS′×S′ , where S′ is the state space of B1. Therefore, as k increases, after some
finite K0, every type profile that is ever attained will have been encountered already. We now
place an upper bound on K0.

▶ Lemma 5.7. We can effectively compute K0 > 0 such that for every k > 0 there exists k′ ≤ K0

with Υ(B1, k
′) = Υ(B1, k).

Proof. Consider a type τ , and let Ψτ be the PA formula constructed as per Lemma 5.4 for the
NFA B1. Observe that for a Parikh vector (p,o) and for k > 0, the expression |p| = |o| = k

is PA definable. Indeed, writing p = (x1, . . . , x|ΣI |) and q = (y1, . . . , y|ΣO|), the expression is
defined by x1 + . . .+ x|ΣI | = k ∧ y1 + . . .+ y|ΣO| = k.

Let T ⊆ BS′×S′ be a set of types (i.e., a potential type profile). We define a PA formula
ΘT (z) over a single free variable z such that k |= ΘT (z) iff Υ(B1, k) = T , as follows.

ΘT (z) =
(

∀p,o, |p| = |o| = z →
∨

τ∈T

Ψτ (p,o)
)

∧
(∧

τ∈T

∃p,o, |p| = |o| = z ∧ Ψτ (p,o)
)

Intuitively, ΘT (z) states that every Parikh vector (p,o) with |p| = |o| = z has a type within T ,
and that all the types in T are attained by some such Parikh vector.

By [FR74; BT76], we can effectively determine for every T whether ΘT (z) is satisfiable and,
if it is, find a witness MT such that MT |= ΘT (z). By doing so for every set T ⊆ BS′×S′ , we can
set K0 = max {MT | ΘT (z) is satisfiable }. Then, for every k > K0 if Υ(B1, k) = T , then T has
already been encountered at MT ≤ K0, as required. ◀

The purpose of the bound K0 obtained in Lemma 5.7 is to bound the minimal k for which
T1 ≺k,Λ T2, or equivalently L(Permk(B1)) ⊆ L(Permk(B2)) (by Lemma 4.4 and Observation 5.6).
This is captured in the following.

▶ Lemma 5.8. Let k, k′ > 0 such that k ̸= k′ and Υ(B1, k
′) = Υ(B1, k), then we have

L(Permk(B1)) ⊆ L(Permk(B2)) iff L(Permk′(B1)) ⊆ L(Permk′(B2)).

Proof. By the symmetry between k and k′, it suffices to prove w.l.o.g. that if L(Permk(B1)) ⊆
L(Permk(B2)), then L(Permk′(B1)) ⊆ L(Permk′(B2)).

Assume the former, and let w = (x′, y′) ∈ L(Permk′(B1)), where (x′, y′) ∈ (Σk′
I × Σk′

O)∗, and
we denote (x′, y′) = (α′

1, β
′
1) · · · (α′

n, β
′
n) with (α′

j , β
′
j) ∈ Σk′

I × Σk′
O for every 1 ≤ j ≤ n.

Since Υ(B1, k
′) = Υ(B1, k), there is a mapping φ that takes every letter (α′

j , β
′
j) ∈ Σk′

I ×
Σk′

O in w to a letter (αj , βj) ∈ Σk
I × Σk

O that has same type in Permk(B1), so that we can
find (x, y) = (α1, β1) · · · (αn, βn) such that for every 1 ≤ j ≤ n we have τB1(P(αj),P(βj)) =
τB1(P(α′

j),P(β′
j)).

By the definition of the type of a Parikh vector, we have that

τPermk(B1)(αj , βj) = τB1(P(αj),P(βj)) = τB1(P(α′
j),P(β′

j)) = τPermk′ (B1)(α′
j , β

′
j).

23

In particular, since the type of a word is the concatenation (i.e., Boolean matrix product)
of its underlying letters, we have that τPermk(B1)(x, y) = τPermk′ (B1)(x′, y′). Since (x′, y′) ∈
L(Permk′(B1)), it follows that also (x, y) ∈ L(Permk(B1)). Indeed, (τPermk′ (B1)(x′, y′))s1

0,s1
f

= 1
where s1

0 and s1
f are an initial state and an accepting state of Permk′(B1), respectively. But

the equality of the types implies that
(
τPermk(B1)(x, y)

)
s1

0,s1
f

= 1 as well, so Permk(B1) has an

accepting run on (x, y).
By our assumption, L(Permk(B1)) ⊆ L(Permk(B2)), so (x, y) = φ(w) ∈ L(Permk(B2)), or

equivalently, φ(w) ∈ L(Permk(B2)). We now essentially reverse the arguments above, but with
B2 instead of B1. However, this needs to be done carefully, so that the mapping of letters lands
us back at (x′, y′), and not a different word. Thus, instead of finding a round equivalent word,
we observe that for every 1 ≤ j ≤ n, we also have

τPermk(B2)(αj , βj) = τB2(P(αj),P(βj)) = τB2(P(α′
j),P(β′

j)) = τPermk′ (B2)(α′
j , β

′
j),

This follows from Item 2 in Observation 5.5 and the fact that the permutation closure depends
only on the transitions (and not on accepting states, which are the only difference between B1

and B2).
Thus, similarly to the arguments above, we have that (x′, y′) ∈ L(Permk′(B2)), and the

mapping applied is in fact the the inverse map φ−1, where φ−1(φ(w)) = w. We conclude that
L(Permk′(B1)) ⊆ L(Permk′(B2)), as required.

The mapping is illustrated in Figure 5.2. ◀

w ∈ Permk′(B1)
w = (x1, y1)(x2, y2) · · · (xn, yn)

φ(w) ∈ Permk(B1)
φ(w) = φ ((x1, y1)) φ ((x2, y2)) · · · φ ((xn, yn))

φ(w) ∈ Permk(B2)

φ−1(φ(w)) = w ∈ Permk′(B2)

φ

⊆

φ−1

Figure 5.2: A diagram for the proof structure of Lemma 5.8.

Combining Lemmas 5.7 and 5.8, we can effectively compute K0 such that if it holds that
L(Permk(B1)) ⊆ L(Permk(B2)) for some k, then this also holds for some k < K0. Finally,
using Lemma 4.4, this concludes the proof of Theorem 5.1. ◀

▶ Remark 5.9 (Complexity results for Theorem 5.1 and Corollary 5.2). Let n be the number of
states in T1×T2. Observe that the formula Ψτ constructed in Lemma 5.4 comprises a conjunction
of O(n2) PA subformulas, where each subformula is either an existential PA formula of length
O(n), or the negation of one. Then, the formula ΘT in Lemma 5.7 consists of a universal
quantification, nesting a disjunction over |T | formulas of the form Ψτ , conjuncted with |T |
existential quantifications, nesting a single Ψτ each. Overall, this amounts to a formula of
length |T | ≤ 2n2 , with alternation depth 3. 1

1Alternation depth is usually counted with the outermost quantifier being existential, which is not the case
here, hence 3 instead of 2.

24

Using quantifier elimination [Coo72; Opp78], we can obtain a witness for the satisfiability
of ΘT of size 4-exponential in n2. Then, finding the overall bound K0 amounts to 22n2

calls to
find such witnesses. Finally, we need K0 oracle calls to Lemma 4.4 in order to decide existential
simulation, and since K0 may have a 4-exponential size description, this approach yields a
whopping 5-EXP algorithm. This approach, however, does not exploit any of the structure of
ΘT .

5.3 Lower Bounds for Existential Round Simulation

The complexity bounds in Remark 5.9 are naively analyzed, and we leave it for future work
to conduct a more in-depth analysis. In this section, we present lower bounds to delimit the
complexity gap. Note that there are two relevant lower bounds: one on the complexity of
deciding round simulation, and the other on the minimal value of K0 in Theorem 5.1.

We start with the complexity lower bound, which applies already for round equivalence.

▶ Theorem 5.10. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2 for any
k, is PSPACE-hard, even for Λ of a constant size (given as a 5-state DFA).

Proof sketch. We present a similar reduction to that of Theorem 4.7 from universality of NFAs
(see Appendix A.2). In order to account for the unknown value of k, we allow padding words
with a fresh symbol #, which is essentially ignored by the transducers. ◀

Next, we show that the minimal value for K0 can be exponential in the size of the given
transducers (in particular, of T2).

▶ Example 5.11 (Exponential round length). Let p1, p2, . . . , pm be the first m prime numbers. We
define two transducers T1 and T2 over input and output alphabet P = {1, . . . ,m}, as depicted
in Figure 5.3 for m = 3. Intuitively, T1 reads input w ∈ Λ = (1 · 2 · · ·m)∗ and simply outputs
w, whereas T2 works by reading a letter i ∈ P, and then outputting i for pi steps (while reading
pi arbitrary letters) before getting ready to read a new letter i.

In order for T2 to k-round simulate T1, it must be able to output a permutation of (1·2 · · ·m)∗.
In particular, the number of 1’s, 2’s, etc. must be equal, so k must divide every prime up to pm,
hence it must be exponential in the size of T2.

s3/3

s1/1

s2/2

1

2

3

2
s1

2

2
s2

2

2
s3

2

1
s1

1

1
s2

1

3
s1

3

3
s2

3

3
s3

3

3
s4

3

3
s5

3

1

2

3

P

ε

P P

ε

P P P P

ε

Figure 5.3: The transducers T1 (left) and T2 (right) for m = 3 in Example 5.11. The transition
s

ε−→ t in T2 means that the transition function from state s behaves identically as from t.

25

The sum of the number of states in T1 and T2 is 1 + m +
∑m

i=1 pi = O (
∑m

i=1 pi). Set
Q =

∏m
i=1 pi. It is easily verified that T1 ≺k T2 holds for k = m ·Q, which is exponential in the

number of states. Indeed, for the round w = (1 · · ·m)Q, we consider the permutation 1Q · · ·mQ,
on which the run of T2 induces the same output.

We now show that this k is minimal. For a word x ∈ (1 · 2 · · ·m)∗ in rounds of k to have
round equivalent outputs in T1 and T2, there must be some word round equivalent word x′ in
which every appearance of i ∈ P is part of a sequence of appearances of i, of length pi, except
maybe at its end. If m | k, then there are k

m appearances of each i, so k
m must be divisible by all

primes, except maybe one. The latter possibility is falsified when considering the next round.
If, however, m ∤ k, then in the next round, 1 ∈ P will have one less appearance than in the first
round. This, again, makes impossible the round equivalence of the outputs when considering
one additional round.

26

Chapter 6

From Process Symmetry to Round
Equivalence

As mentioned in Chapter 1, our original motivation for studying round simulation comes from
process symmetry. We present process symmetry with an example before introducing the formal
model. Recall the Round Robin (RR) scheduler from Example 3.2. There, at each time step,
the scheduler receives as input the IDs of processes in P = {0, 1, 2} that are making a request,
and it responds with the IDs of those that are granted (either a singleton {i} or ∅).

In process symmetry, we consider a setting where the identities of the processes may be
permuted. This corresponds to the IDs representing, for instance, ports, and the processes
not knowing which port they are plugged into. Thus, the input received may be under any
permutation of the actual identities of the processes. Note that a permutation in this case is
a bijection over identities, not indices as in previous chapters. Then, a transducer is process
symmetric if the outputs are permuted in a way that matches the permutation of identities. For
example, in the RR scheduler, the output corresponding to input {1, 2}{3}{3} is {1}∅{3}. If
we permute the identities by swapping 1 and 3, obtaining the input {3, 2}{1}{1}, the output
letters have to be permuted in the same manner for RR to be process symmetric. However, the
output for the input with permuted identities is ∅∅∅, so RR is not process symmetric.

In [Alm20], several definitions of process symmetry are studied for probabilistic transducers.
In the deterministic case, however, process symmetry is a very strict requirement. In order to
overcome this, we allow some flexibility by letting the transducer do some local order changes
in the word in a way that corresponds to the permutation. This way, for instance, if we are
allowed to rearrange (i.e. permute, in the former sense) the input {3, 2}{1}{1} to {1}{1}{3, 2},
then the output becomes {1}∅{3}, and once we apply the inverse permutation, this becomes
{3}∅{1}. This, in turn, can be again rearranged to obtain the original output {1}∅{3}. In this
sense, the scheduler is “locally stable” against permutations of the identities of processes.

We now turn to give the formal model. Consider a set of processes P = {1, . . . ,m} and
k > 0. For a permutation π of P (i.e. a bijection π : P → P) and a letter σ ∈ 2P , we obtain
π(σ) ∈ 2P by applying π to each process in σ. We lift this to words x ∈ (2P)∗ by applying the
permutation letter-wise to obtain π(x). A 2P/2P transducer T =

⟨
2P , 2P , Q, q0, δ, ℓ

⟩
is k-round

symmetric if for every permutation π of P and for every k-round word x ∈ (2P)∗ there exists
x′ ∈ (2P)∗ such that π(x) ≍k x

′ and π(T (x)) ≍k T (x′). We say that T is k-round symmetric

27

w.r.t. π if the above holds for a certain permutation π.

▶ Example 6.1. Consider the RR scheduler for n processes (cf. Example 3.2), and let T be a
transducer for it. When a permutation π ∈ Sn is applied on the signals, then intuitively, to
preserve the behaviour of the system (i.e. the number of grants for each process), we need to
change the order of handling the requests of processes (and giving grants) such that it matches
the new order of requests. Formally, given input x, for the i-th round b1b2 · · · bn of π(x) (the
input under permutation π) we set the corresponding round in x′ to bπ−1(1)bπ−1(2) · · · bπ−1(n). For
example, if π = (0 1) and n = 3, given x = {0, 2}{1}{2} we get π(x) = {1, 2}{0}{2} and choose
x′ = {0}{1, 2}{2}. Thus, it holds that T (x) = π−1(T (x′)) or equivalently, π(T (x)) = T (x′), so
RR is n-round symmetric.

Example 6.1 shows that RR exhibits round symmetry w.r.t. all permutations. In the general
sense, round symmetry might hold w.r.t. some permutations but not others, as is the case in
the following.

▶ Example 6.2. Set P = {0, 1, 2} and let T be the 2P/2P transducer illustrated in Figure 6.1.
It is not difficult to see that T satisfies 2-round symmetry w.r.t. π = (0 1) but not w.r.t. some
other permutations, e.g. (0 2).

q0start

{0}

{1}

{2}

{1} behave like q0

{0} behave like q0

{2} behave like q0

0 ∈ σ

0 /∈ σ, 1 ∈ σ

0, 1 /∈ σ

Σ

Σ

Σ

Figure 6.1: Transducer T satisfying round symmetry w.r.t. π = (0 1) but not (0 2).

In round symmetry, too, we consider two main decision problems: fixed round symmetry
(where k is fixed) and existential round symmetry (where we decide whether there exists k > 0
for which this holds). Observe that Λ = (2P)∗, and is therefore ignored.

From round symmetry to round simulation. In order to solve the decision problems
above, we reduce them to the respective problems about round symmetry. We start with the
case where the permutation π is given.

Given the transducer T as above, we obtain from T a new transducer T π which is identical
to T except that it acts on a letter σ ∈ 2P as T would act on π−1(σ), and it outputs σ
where T would output π−1(σ). Figure 6.2 presents the transducer T π that corresponds to T
of Example 6.2 and π = (0 1).

Formally, T π =
⟨
2P , 2P , Q, q0, δ

π, ℓπ
⟩

where δπ(q, σ) = δ(q, π−1(σ)) and ℓπ(q) = π(ℓ(q)). It
is easy to verify that for every x ∈ (2P)∗ we have T π(x) = π(T (π−1(x))). As we now show,
once we have T π, round symmetry is equivalent to round simulation, so we can use the tools
developed in Chapters 4 and 5 to solve the problems at hand.

▶ Lemma 6.3. For a permutation π and k > 0, T is k-round symmetric w.r.t. π iff T π ≺k T .

28

q0start

{1}

{0}

{2}

{0} behave like q0

{1} behave like q0

{2} behave like q0

1 ∈ σ

0 ∈ σ, 1 /∈ σ

0, 1 /∈ σ

Σ

Σ

Σ

Figure 6.2: Transducer T π for the T in Example 6.2 and π = (0 1).

Proof. By definition, we have that T π ≺k T iff for every x ∈ (2P)∗ there exists x′ ≍ x such
that T π(x) ≍ T (x′). We show that this is equivalent to the definition of round symmetry.

For the first direction, assume T is k-round symmetric w.r.t. π, and let x ∈ (2P)∗. Applying
the definition of k-round symmetry to y = π−1(x) shows that there exists x′ ≍ π(y) such that
π(T (y)) ≍ T (x′). Since π(y) = x we get that x′ ≍ x and π(T (π−1(x))) ≍ T (x′). By the above,
T π(x) = π(T (π−1(x))), so we have T π(x) ≍ x′.

For the second direction, assume T π ≺k T , and let x ∈ (2P)∗. Applying the defini-
tion of round simulation to z = π(x), there exists x′ ≍ z such that T π(z) ≍ T (x′). Thus,
π(T (π−1(z))) ≍ T (x′), but π−1(z) = x, so we get π(T (x)) ≍ T (x′), and we are done. ◀

Closure under composition. In order to deal with the general problem of symmetry under
all permutations, one could naively check for symmetry against each of the m! permutations.
We show, however, that the definition above is closed under composition of permutations.

▶ Lemma 6.4. Consider two permutations π, χ. If T π ≺k T and T χ ≺k T then T π◦χ ≺k T .

Proof. Using the first definition of round symmetry, let x ∈ (2P)∗, then there exists x′ ≍k π(x)
such that T (x′) ≍k π(T (x)). Moreover, there exists x′′ ≍k χ(x′) ≍k χ(π(x)) such that T (x′′) ≍k

χ(T (x′)) ≍k χ(π(T (x))), and we are done. ◀

Recall that the group of all permutations of P is generated by two permutations: the trans-
position (1 2) and the cycle (1 2 · · · m) [Cam+99]. By Lemma 6.4 it is sufficient to check
symmetry for these two generators in order to obtain symmetry for every permutation. Note
that for the existential variant of the problem, even if every permutation requires a different
k, by taking the product of the different values we conclude that there is a uniform k for all
permutations. We thus have the following.

▶ Theorem 6.5. Both fixed and existential round symmetry are decidable. Moreover, fixed round
symmetry is in PSPACE.

Finally, the reader may notice that our definition of round symmetry w.r.t. π is not sym-
metric, as was the case with round simulation compared to round equivalence. However, when
we consider round symmetry w.r.t. to all permutations, the definition becomes inherently sym-
metric, as a consequence of Lemma 6.4.

▶ Lemma 6.6. In the notations above, if T π ≺k T then T ≺k T π.

29

Proof. Recall that for every permutation π we have πm! = id, where id is the identity permu-
tation. In particular, πm!−1 = π−1.

By Lemma 6.4, we now have that if T π ≺k T , then T πm!−1 ≺k T , so T π−1 ≺k T . Applying
π to both sides gives us T ≺k T π. ◀

Thus, for symmetry, the notions of round simulation and round equivalence coincide.

30

Chapter 7

The Simulation Mapping

The definition of round simulation in Chapter 3 consists of existential statements: it considers the
existence of words x′ that satisfy the requirement of round simulation. However, our framework
lacks an additional feature – we settle for x′ to exist, but that does not mean we can actually
compute it. In some cases, being able to calculate it is beneficial; in other cases, it is necessary.

Computing x′ has several benefits. Consider the monitor from Example 1.1. We have
modelled it by a transducer T1 and presented a simpler transducer T2 that round simulated
T1, which allowed us then to verify a desired property on M against the much smaller T2: “if
there is no error, then Process 3 works at least once every 20 steps”. The way the verification
is performed under simulation is by rewriting the property in a way that exploits the simpler
behaviour of T2. For instance, since we know that T2 expects to see the requests in the order of
the process IDs, then in particular in the case of no error, in every round of length 10 the third
letter must be {3}. Then we can rewrite the property in terms of T2 in the following manner: “if
there is no error, then for all n ∈ N, the input must have {3} in one of the indices 20n+ 3 and
20n + 13”. An algorithm could then be designed to verify this more specific property. Observe
that to rewrite the property we needed some insight on the behaviour of T2; specifically, we had
to know the structure of x′ for any input x that satisfies the premise of the property.

We showed an example of a case where we need be able to calculate x′ for verification of
properties. Generally, being able to compute x′ has the additional benefit of explainability: it
allows us to give a solid reason for the verification result. For instance, if some property does
not hold for x, a developer might want to get insight by computing the run of T2 on x′, instead
of the possibly much more expensive computation of the run of T1 on x. It turns out that, in
the general sense, calculating x′ is not a simple task.

Consider two transducers T1 and T2 such that T1 ≺k T2, and an input word x ∈
(
Σk

I

)∗
. This

means, by definition, that there is a way to permute the rounds in x to obtain a word x′ such
that T2(x′) is a permutation of T1(x). Consider then a mapping ψT1,T2 : x 7→ x′ that maps every
input word x to a corresponding round equivalent word x′ (and we drop the subscript when the
transducers are clear from context). We call this a simulation mapping between T1 and T2. In
this section we study this mapping and present some properties that it does or does not satisfy.
We begin with an example.

▶ Example 7.1. Consider the transducers T1 and T2 depicted in Figure 7.1, with input and

31

output alphabets ΣI = {a, b} and ΣO = {0, 1}. T1 expects to see either ab or ba in every round,
outputting 00 in both cases, and otherwise outputs 01 in that round. T2 expects the first round
to be ab and the second to be ba, otherwise outputs 01 in the round not meeting expectations;
and beginning from the third round, it behaves like T1. We have that T1 ≺2 T2 by a permutation
that corrects the order of the letters in the first two rounds of the input. Moreover, we have
ψ(ab) = ψ(ba) = ab whereas ψ(abba) = abba ̸= ψ(ab) · ψ(ba).

0

start

0

0 1

a

b a
b

a
b
a

b

start

0

0

0

1

0

0

0

1

0 0

0 1

a
b a

b

a, b

a
b

a
b

a, b

a
b

a

b

a

b

a

b a
b

a
b
a

b

Figure 7.1: The transducers T1 (left) and T2 (right) in Example 7.1. The states of T2 in red,
green and blue manage the first, second and later rounds, respectively.

Example 7.1 shows that ψ is not a homomorphism: it does not satisfy ψ(xy) = ψ(x)ψ(y).
Next, we show that ψ cannot be described by a look-ahead machine, i.e. one that reads a
“compound” of rounds in every step.

▶ Example 7.2. Set Λ = L[ab · (cc)∗ · (ab+ ba)] and k = 2, and let T1 and T2 be the transducers
in Figure 7.2, satisfying T1 ≺k,Λ T2. Denote the simulation mapping by ψ∗ : (Σk

I)∗ → (Σk
I)∗.

start

1

1

2 3

5

4

6

a

b

b

a

c

a

b

b

a

start

1

1

2

2

3

5

4

6

a

b

b

a

c

c

a

b

b

a

Figure 7.2: The transducers T1 (left) and T2 (right) in Example 7.2.

We claim that for any r, there is no look-ahead machine that defines a function ψr : (Σrk
I)∗ →

(Σrk
I)∗ such that ψ∗(x) = ψ(x) for all input words x.
Indeed, let r ∈ N, and assume by way of contradiction that such ψr exists. Now consider

the input word x = ab · crk−2. ψr(x) must start with either ab or ba. Without loss of generality,
assume the former, and consider the input word x′ := x · ba · crk−2. Since ψr works on r rounds
each time, the first r rounds are fixed when it reads the (r+1)-th round. Moreover, since ψr(x′)
must induce a valid path in T2, the only option for the (r + 1)-th round of ψr(x′) is ab. Hence,
the output of T1 on x′ is different from the output of T2 on ψ(x′), and we have a contradiction.

In Example 7.2, we used the definition of round simulation with restriction; however, it is
indeed possible to get rid of the restriction language Λ – it was kept for clarity. Moreover, the

32

example uses a round length of k = 3, but it can be extended to any round length k > 0 in a
similar manner.

We showed that a look-ahead of r rounds does not suffice for any r. Moreover, a sliding-
window variation of the look-ahead model, in which at any given round the machine can read
r − 1 additional rounds in the future, would not give any additional benefit either; in fact, the
same pair of transducers in Example 7.2 show that it is generally impossible to determine the
output of the first round without knowing the entire input.

Currently, the best algorithm we have for computing ψ is straight-forward: for an input x,
we iterate over all round equivalent words x′ ≍k x and check for satisfaction of T1(x) ≍k T2(x′).
Since the length of inputs is unlimited, this algorithm can only be modelled by a Turing machine.
The question of whether ψ can be defined by a simpler finite-state model remains open.

33

34

Chapter 8

Additional Notions of Symmetry and
Simulation

8.1 Variations of Round Symmetry and Round Simulation

Recall from Chapter 2 that y is a permutation of x if their Parikh images are equal: P(x) = P(y).
Furthermore, two words x and y are round equivalent, denoted by x ≍k y, when every round in
y is a permutation of the same round in x. Notice that the rounds need not be permuted in the
same manner; the i-th round is permuted by a possibly distinct τi : [k] → [k] (a permutation of
indices). When, however, all permutations coincide, i.e. τ1 = τ2 = · · · , then we say that x and
y are uniformly round equivalent and denote by x ≍u

k y.
In round symmetry described in Chapter 6, we were given a transducer T and we checked

whether for every input x there exists x′ ≍k x such that π(T (x)) ≍k T (x′). One could require
instead that the equivalence between the two pairs of words be uniform. We call the variation
of symmetry under this constraint uniform round symmetry. Formally, a 2P/2P transducer T
is uniformly k-round symmetric if for every permutation π of P (a permutation of signals) and
input x, there exists x′ ≍u

k x such that π(T (x)) ≍u
k T (x′). Note that the uniform permutation

between x and x′ is not necessarily identical to that between π(T (x)) and T (x′).

▶ Example 8.1 (Round Robin). Consider the RR scheduler for n processes, shown to be n-round
symmetric in Example 6.1. Recall that in the proof of its symmetry when the permutation π was
applied to the signals, we had to change the order of handling the requests such that it matched
the new order of received requests: given input x, for the i-th round b1b2 · · · bn of π(x) (the input
under permutation π) we set the corresponding round in x′ to bπ−1(1)bπ−1(2) · · · bπ−1(n). Since
the same permutation π was applied for all rounds of the input x, the permutation by which
the rounds of x′ were obtained was identical for all rounds. It follows that RR exhibits uniform
round symmetry.

Dually, a weaker notion of symmetry than round symmetry is what we call Parikh round
symmetry: keeping in mind that the letters in process transducers are subsets of process identities
in P, a permutation in Parikh round symmetry can not only move letters but also signals, as
long as every i ∈ P appears the same number of times in the round as originally. For example,
if P = {1, 2, 3} then ΣI = 2P and the round {1, 2}{3}∅ ∈ (ΣI)∗ can be permuted to ∅{2, 3}{1}

35

by moving the signal 2 from the first letter to the second, and the signal 1 to the third. To state
this formally, we first need to expand our terminology a step further.

Let P = {1, . . . , n}. For a word x = x1 . . . xk ∈ (2P)k, define #(x, i) = | { j | i ∈ xj } |
to be the number of occurrences of i in x. Then, we define the Parikh image w.r.t. P of x
as PP(x) = (#(x, 1), ...,#(x, n)) ∈ Nn. If it holds that PP(x) = PP(y), we say that y is a
signal permutation of x. Furthermore, for words x, y ∈

(
(2P)k

)∗
, if every round of y is a signal

permutation of the same round in x, we say that x and y are Parikh round equivalent and write
x ≍p

k y.
Following this, we formally call a 2P/2P transducer T Parikh k-round symmetric if for every

permutation π of P (a permutation of signals) and input x, there exists x′ ≍p
k x such that

π(T (x)) ≍p
k T (x′).

The original notion of round symmetry described in Chapter 6 is hereby called symbol-
wise round symmetry, reflecting the permutation over symbols (as opposed to signals) between
rounds. The original relation of equivalence for words is correspondingly called symbol-wise
round equivalence.

▶ Example 8.2 (Parikh symmetry does not imply symbol-wise symmetry). Set π = (0 1) and
let k ∈ N and m ≥ 3. We construct a transducer that is Parikh k-round symmetric, but not
symbol-wise k′-round symmetric for any k′.

Consider the 2P/2P transducer T =
⟨
2P , 2P , S, s0, δ, ℓ

⟩
depicted in Figure 8.1, where P =

[m] = {0, · · · ,m− 1}.

q0start

∅ ∅ · · · ∅ {0} behave like q0

∅ ∅ · · · ∅ {1} behave like q0

∅
1

∅
2

· · · ∅
k − 1

∅ behave like q0
k

{0
}

{1, 2}

else
ΣI ΣI ΣI {1, 2}

else

ΣI ΣI ΣI {0}
else

ΣI ΣI ΣI ΣI

Figure 8.1: T exhibits Parikh, but not symbol-wise, round symmetry (see Example 8.2).

Observe that every round starts at q0. There are three possible forms for the output of each
round depending on the input, as summarized in Table 8.1.

Table 8.1: The inputs and their corresponding outputs in T of Example 8.2.

Input Output

{0}σ2 · · ·σk−1{1, 2} ∅k−1{0}
{1, 2}σ2 · · ·σk−1{0} ∅k−1{1}

else ∅k

We first show that T is Parikh round symmetric. Let x be an input word and π a permutation
of P. Like in Chapter 6, π(x) is the word obtained from x by permuting every signal according

36

to π. If x is of one of the first two forms in Table 8.1, then by moving the signal 2 ∈ P (fixed in
π) between the first and last letters, we get x′ ≍p π(x) such that T (x′) ≍p π(T (x)), as desired.
Now assume x is of some other form, having the output ∅k. If 2 ∈ P appears in both the first
and last letters, or it appears in neither, then set x′ = π(x); otherwise, move the signal 2 to the
other letter, and the output will remain ∅k. Thus, T is Parikh round symmetric.

On the other hand, T is not symbol-wise k′-round symmetric for any k′ > 0. To see this,
take the input x = {0}k−1 · {1, 2} · ∅k′k−k. We have |x| = k′k which is divisible by k′, T (x) =
∅k−1 ·{0}·∅k′k−k. It holds that π(x) = {1}k−1 ·{0, 2}·∅k′k−k, which contains neither the letter {0}
nor {1, 2}. Thus, regardless of how we permute π(x) to obtain x′, the output of any x′ ≍s π(x)
is always ∅k′k, which is not a permutation of T (x).

Three types of round equivalence for words have been presented in total, and each of them was
used to define a variation of round symmetry: Parikh, symbol-wise and uniform. Collectively,
we call them the modes of permutation and define MOP = {p, s, u}, where p, s and u stand for
Parikh, symbol-wise and uniform. In the remainder of this section, we extend the definitions to
round simulation and consider how these three modes relate to each other.

Extension to round simulation. Similarly to symmetry, round simulation can also be ex-
tended to variations of its original notion described in Chapter 3. As an example, consider RR
for three processes. Let T0 and T1 be two copies of RR with different initial states (cf. Ex-
ample 3.2): T0 first considers requests from signal 0, whereas T1 from signal 1. Example 3.2
established that T0 ≺k T1. In fact, the permutation of indices τ = (0 1 2) is the only permutation
used in the simulation: by permuting the rounds of x according to τ , one obtains x′ such that
all rounds of T1(x′) are obtained from those of T0(x) by applying τ . In other words, for every
input x, there exists x′ ≍u

k x such that T0(x) ≍u
k T1(x′). It follows that a notion of uniformity in

round simulation is exhibited; that is, the uniform mode of permutation u ∈ MOP can be used
to measure equivalence of words in round simulation, just as it has been for round symmetry.

Formally, we say a transducer T1 is ⟨u, u, k⟩-round simulated by T2 if for every input x there
exists x′ ≍u

k x such that T1(x) ≍u
k T2(x′) (and the reason behind the double appearance of u will

be clear in what follows).
As we would expect, round simulation can similarly be extended for the remaining mode

of permutation, p ∈ MOP. However, we can also measure the equivalence of the input and
the output words according to different symmetry notions, thereby combining two symmetry
notions. For this end, we say a transducer T1 is ⟨η, η′, k⟩-round simulated by T2 if for any input
word x, there exists x′ ≍η

k x such that T2(x′) ≍η′

k T1(x). When this holds between T1 and T2,
we denote this by T1 ≺η,η′

k T2 (for simplicity, we do not consider restriction languages in this
section).

We go a step further and define a partial order on the set of all types of round simulation
according to this definition, i.e. the set MOP2

k := { ⟨η, η′, k⟩ | η, η′ ∈ MOP } for a fixed k > 0.
The meaning of the order between two types of simulation is aimed to be implication in the
following sense: if ⟨η, η′, k⟩ ≤ ⟨µ, µ′, k⟩, then T1 ≺µ,µ′

k T2 implies T1 ≺η,η′

k T2. Before defining the
order on MOP2

k, we begin with defining an order on MOP as such: p ≤ s ≤ u. Here, too, the
meaning is implication, as established by the following lemma.

37

▶ Lemma 8.3. Let x, y be words over Σ. For any k > 0 and η, µ ∈ MOP such that η ≤ µ, if
x ≍µ

k y then x ≍η
k y.

Intuitively, this is because if uniform equivalence holds between words, then in particular,
symbol-wise equivalence holds too by a simple observation of the definitions; and if symbol-wise
equivalence holds between x and y, this means y is a permutation and, in particular, a signal
permutation of x.

Following this, we can now define the order on MOP2
k to be the product order of two copies

of MOP: ⟨η, η′, k⟩ ≤ ⟨µ, µ′, k⟩ if both η ≤ µ and η′ ≤ µ′. In fact, MOP defines a lattice,
and MOP2

k (upon fixing k and ignoring the third coordinate) is the lattice obtained from the
product of two copies of MOP. It is not difficult to see from the definition that the following
holds too.

▶ Lemma 8.4. Let T1 and T2 be transducers. For any η, η′, µ, µ′ ∈ MOP such that ⟨η, η′, k⟩ ≤
⟨µ, µ′, k⟩, if T1 ≺µ,µ′

k T2 then T1 ≺η,η′

k T2.

We furthermore show that these implications are strict.

▶ Example 8.5. Recall the transducer T from Example 8.2, and consider the transducer T π

obtained from T by permuting both the input and the output by π as in Chapter 6. We have
shown that T is Parikh round symmetric. By a reasoning analogous to the transition from
symmetry to simulation as per Chapter 6, this gives T ≺p,p

k T π. However, it does not hold that
T ≺s,p

k T π: for the input x := {0}σ2 · · ·σk−1{1, 2} having output y := ∅k−1{0} (cf. Table 8.1),
any permutation x′ ≍s

k x will lead to an output of ∅k ̸≍p
k y. Thus T ̸≺s,p

k T π (and in particular,
T ̸≺s,s

k T π so T is not symbol-wise symmetric). In the general sense, we conclude that T1 ≺p,p
k T2

does not imply T1 ≺s,p
k T2.

Example 8.5 establishes the gap1 ⟨p, p, k⟩ ⪇ ⟨s, p, k⟩, illustrated in Figure 8.2. In order to
establish the gap ⟨p, p, k⟩ ⪇ ⟨p, s, k⟩, we use a different pair of transducers. As for the first gap,
we use a process-symmetric approach: we define one transducer T and choose T1 and T2 to be
T and T π.

⟨p, p, k⟩

⟨p, s, k⟩ ⟨s, p, k⟩

⟨s, s, k⟩

Figure 8.2: A Hasse diagram for a subset of the partial order on MOP2
k (α → β implies

α ≤ β). We show that all ordered pairs are strict.

▶ Example 8.6. Consider the transducer T in Figure 8.3, whose round-by-round behaviour can
once more be summarized in a table (see Table 8.2). T is Parikh round symmetric: for an input

1Inequality clearly holds between the two tuples. However, we use the notation of equality (and strict inequal-
ity) between elements in MOP2

k to mean the implication of round simulation (or lack of it) between these types,
as in Lemma 8.4.

38

x, choose x′ = π(x). It is not difficult to show that T (x′) ≍p
k π(T (x)) by considering the possible

forms of x according to Table 8.2. To see that T ⊀p,s
k T π, consider the word x = {0}∅∅. The

output of T on x is {0}∅{2}. Any round equivalent word x′ of x either starts with {1} or ∅, the
respective outputs being either {1, 2}∅∅ or ∅3. In all cases, we have T (x′) ̸≍s

k T π(x).

q0start

{0}

{1}

{0, 2}

{1, 2}

∅

∅

{2}

∅

{2} behave like q0

∅ behave like q0

∅ behave like q0

{0}

{1, 2}

{0, 2}
{1}

else

2 /∈ σ

2 ∈
σ

2 /∈ σ
2 ∈ σ

Σ

Σ

Σ

Σ

Σ

Σ

Figure 8.3: The transducer T for Example 8.6. The transitions i ∈ σ and i /∈ σ mean all
letters from ΣI that, respectively, contain or do not contain i.

Table 8.2: The inputs and their corresponding outputs in T of Example 8.6.

Input Output

{0}(2 /∈ σ)σ {0}∅{2}
{0}(2 ∈ σ)σ {0}{2}∅

{1, 2}(2 ∈ σ)σ {1}∅{2}
{1, 2}(2 /∈ σ)σ {1}{2}∅

{0, 2}σσ {0, 2}∅∅
{1}σσ {1, 2}∅∅

else ∅∅∅

The transducers used in Examples 8.5 and 8.6 have established two gaps from Figure 8.2. In
fact, these same transducers can be used to establish the remaining two gaps as well, as follows.
The transducer T in Example 8.5 satisfies ⟨p, s, k⟩-round simulation with its corresponding
T π; indeed, observe that the output labels are either singleton sets or empty sets, so that a
signal permutation of the output is equivalent to permuting the letters. The transducer T
in Example 8.6 satisfies ⟨s, p, k⟩-round simulation with its corresponding T π, which is inferred
from the choice of x′ = π(x), satisfying in particular x′ ≍s π(x). However, neither of the two
satisfy ⟨s, s, k⟩-round simulation, since they are not symbol-wise round symmetric. This finishes
the proof of strictness of the gaps illustrated in Figure 8.2.

The full Hasse diagram of the partial order on MOP2
k is illustrated in Figure 8.4. We believe

that elements in the same row are not comparable and, as in the sub-diagram in Figure 8.2,

39

all implications are strict. We conclude our contribution for this section by presenting some
transducers that aid us in the proof of strictness, all being variants of RR:

1. RR that expects all requests in the beginning of every round, but outputs like the original
(e.g. {0, 2}{1}{1} would output {0}∅{2}), modelled by T1.

2. RR that expects input as in the original, but outputs all grants in the end of the round
(e.g. {0, 2}{1}{1} would output ∅∅{0, 1}), modelled by T2.

3. RR such that every other round begins by considering requests of Process 1 before Process
0 (e.g. {0}{1}∅ · {0}{1}∅ would output {0}∅∅ · ∅{1}∅), modelled by T3.

Denote by T the transducer for RR. It is not difficult to see that T1 ≺p,u T but T1 ̸≺s,u T ; that
T2 ≺u,p T but T2 ̸≺u,s T ; and that T3 ≺s,s T but T3 ̸≺s,u T and T3 ̸≺u,s T .

⟨p, p, k⟩

⟨p, s, k⟩ ⟨s, p, k⟩

⟨s, s, k⟩

⟨s, u, k⟩ ⟨u, s, k⟩

⟨u, u, k⟩

⟨p, u, k⟩ ⟨u, p, k⟩

Figure 8.4: A complete Hasse diagram for the partial order on MOP2
k (α → β implies α ≤ β).

Finally, Example B.1 presents a pair of transducers T1 and T2 such that T1 ≺s,p
2 T2 and

T1 ≺p,s
2 T2, but T1 ̸≺s,s

2 T2. This proves that although ⟨s, s, k⟩-round simulation implies both
⟨p, s, k⟩ and ⟨s, p, k⟩-round simulation, the inverse does not hold.

8.2 Symmetry over Infinite Words

So far we have dealt with finite words. However, the setting of infinite words is common in
formal verification; it arises naturally in ongoing processes, e.g., elevator controllers, operating
systems, etc.

For modelling systems over infinite words, the same model of transducers could be used.
Indeed, recall that according to our definition of a transducer in Chapter 2, the output is a word
obtained by concatenating labels of the states. This definition extends seamlessly for infinite
words, where for an infinite input x ∈ (ΣI)ω the output is also infinite, T (x) ∈ (ΣO)ω.

Consider therefore a 2I/2O transducer over infinite words T =
⟨
2I , 2O, Q, q0, δ, ℓ

⟩
with input

and output signals I = {i1, . . . , ik} and O = {o1, . . . , ok}. We say that T is ultimately symmetric
if for every permutation π ∈ Sk and for every x ∈ (2I)ω there exists k ≥ 0 such that T (π(x))[k :
∞] = π(T (x))[k : ∞]. That is, for every word x, apart from some finite prefix, the output of T
on π(x) is identical to the permuted output π(T (x)). We say that T is ultimately symmetric

40

w.r.t. π if the above holds for a certain permutation π. The main result of this section is the
following.

▶ Theorem 8.7. The problem of deciding whether a transducer T is ultimately symmetric w.r.t.
π can be solved in polynomial time.

To prove this, we first need to define an additional tool.
A deterministic co-Büchi automaton over words (DCW) is a tuple C = ⟨Σ, Q, q0, δ, α⟩ where

Σ, Q, q0 and δ are defined just as in an NFA (c.f. Chapter 2), α ⊆ Q and a run r of an infinite
word w ∈ Σω is accepting if the states appearing infinitely many times in r are elements in α;
i.e. inf(r) ⊆ α. If the run of C on a word w is accepting, we say that C accepts w, and all words
accepted by C comprise the language of C, denoted by L(C).

The condition on an accepting run in a DCW is only one among several acceptance conditions
that could be chosen for automata over infinite words. We refer the reader to [Bok18] for a
detailed survey of the most common types and the motivation for introducing them.

Armed with the definition of DCW, we are now ready to prove the theorem.

Proof of Theorem 8.7. Let T =
⟨
2I , 2O, Q, q0, δ, ℓ

⟩
. We obtain from T and π a DCW CT ,π =⟨

Q×Q, 2I , (q0, q0), µ, α
⟩

as follows. Intuitively, CT ,π simulates two copies of T where the second
copy is permuted by π, i.e. when seeing input σ ∈ 2I it simulates the transition of T with π(σ).
Then, each state (q, r) is marked as accepting if the permuted labelling of q is the same as the
labelling of r. We then show that C accepts a word x ∈ (2I)ω iff there exists k ≥ 0 such that
T (π(x))[k : ∞] = π(T (x))[k : ∞], so all that remains is to decide whether L(C) = (2I)ω, which
can be done in polynomial time.

Formally, we define the components of CT ,π as such: α = { (s, t) | π(ℓ(s)) = ℓ(t) } and
µ ((s, t), I ′) = (δ(s, I ′), δ(t, π(I ′))). Observe that for an input x ∈ (2I)ω, we have that C(x) =
(T (x), T (π(x))). Denote by rC,x the run of C on x. Then, it holds that x ∈ L(C) iff inf(rC,x) ⊆ α,
iff at some point all states in rC,x are in α; i.e. iff there exists k > 0 such that rC,x[k : ∞] ∈ α⋆.
But this is equivalent to saying there exists k > 0 such that π(T (x))[k : ∞] = T (π(x))[k : ∞].
The required result follows. ◀

It is not difficult to show that ultimate symmetry, like round symmetry, is closed under
composition of permutations: if T is ultimately symmetric w.r.t. permutations π and χ then
it is also ultimately symmetric w.r.t. π ◦ χ. Again relying on the fact that the group Sk of
all permutations is generated by two permutations [Cam+99], it follows that the problem of
deciding ultimate symmetry is in P.

41

42

Chapter 9

Conclusion and Open Questions

In this work, we introduced round simulation and provided decision procedures and lower bounds
(some with remaining gaps) for the related algorithmic problems.

Round simulation, and in particular its application to round symmetry, is only an instantia-
tion of a more general framework of symmetry, by which we measure the stability of transducers
under local changes to the input. In particular, there is place for additional notions of sym-
metry and simulation to be studied, and the existing ones extended. Some such variants were
presented and discussed in Section 8.1. An additional possibly interesting notion of simulation
is window simulation, where we use a sliding window of size k instead of disjoint k-rounds as in
round simulation. In addition, the setting of infinite words is of interest. Beside the notion of
ultimate simulation presented in Section 8.2, a possible future direction is to define an analogous
symmetry for the probabilistic setting, where state transitions are equipped with probabilities
and every input leads to some probability distribution over the state space [Alm20]. Finally,
other types of transducers may also require variants of simulation, such as streaming-string
transducers [Alu10].

Beside extending the study of the different notions of symmetry, a few gaps have remained
open along the way of this study. In terms of complexity bounds for the existential case,
can we do better than the 5-EXP bound in Remark 5.9? Furthermore, regarding the simulation
mapping from Chapter 7 that maps every input word to a corresponding word for the simulating
transducer, can we find a sub-Turing model that defines it? Here, too, other models might
help. For this end, a possible direction is looking into streaming-string transducers and bi-
machines [MP19].

43

44

Appendix A

PSPACE Hardness

▶ Lemma A.1. Universality of NFAs over alphabet Σ = {0, 1}, where all states are accepting,
and the degree of nondeterminism is at most 2, is PSPACE-complete.

Proof. In [KRS09], it is shown that universality of NFAs remains PSPACE-complete even for
NFAs over alphabet Σ = {0, 1} and all states accepting. Thus, we only need to show that this
remains the case under the restriction that |δ(q, σ)| ≤ 2 for every state q and letter σ.

To see this, we start by observing that universality remains PSPACE-complete for NFAs
over alphabet {0, 1, $} with nondeterminism degree at most 2. Indeed, given an NFA over
{0, 1} with maximal nondeterminism degree d > 2, we can replace each transition of the form1

δ(q, σ) = {q1, . . . , qd} with a binary tree of depth ⌈log d⌉, reading $ on all transitions, which
starts at q and ends in q1, . . . , qd. Thus, we introduce at most d states for every transition.
By marking these states as accepting, this reduction maintains universality, and requires a
polynomial blowup.

Next, we observe that the reductions in [KRS09, Lemma 2] first transform an NFA over
alphabet size k to an NFA over alphabet size k + 1 with all states accepting and with identical
nondeterminism degree (indeed, the only added transitions are in fact deterministic), and then
transforms an NFA with all states accepting and alphabet size 4 to an NFA with all states
accepting and alphabet size 2, with an equal nondeterminism degree (essentially by encoding
each of the 4 letters as two letters in {0, 1}).

Since we start this chain of reductions with an NFA of nondeterminism degree at most 2, we
maintain this property throughout the proof. ◀

A.1 Proof of Theorem 4.7

We show a reduction from the universality problem for NFAs over alphabet {0, 1} where all
states are accepting and the degree of nondeterminism is at most 2, to round-equivalence with
k = 2 and with Λ given as a DFA of constant size. The former is shown to be PSPACE-hard
in Lemma A.1.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and σ ∈ {0, 1}.
We construct two transducers T1 and T2 over input and output alphabets ΣI = {a, b, c, d} and

1We can assume all transitions have degree exactly d by adding redundant transitions

45

ΣO = {⊤,⊥} and Λ ⊆ Σ∗
I , such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.

Set Λ = (ab + cd)∗ (described as a 4-state DFA). Intuitively, our reduction encodes {0, 1}
into {a, b, c, d}2 by setting 0 to correspond to ab and to ba, and 1 to cd and to dc. Then, T1

keeps outputting ⊤ for all inputs in Λ, thus mimicking “accepting” every word in {0, 1}∗. We
then construct T2 so that every nondeterministic transition of N on e.g., 0 is replaced by two
deterministic branches on ab and on ba. Hence, when we are allowed to permute ab and ba by
round equivalence, we capture the nondeterminism of N .

⊤ ⊤⊤

⊥

ac
b, d

b

a, c, d

d

a, b, c

Figure A.1: The transducer
T1 in the proof of Theorem 4.7.

q

q0,0

q0,1

q1,0

q1,1

0

0

1

1 q

⊤
qa

⊤
qb

⊤
qc

⊤
qd

⊤
q0,0

⊤
q0,1

⊤
q1,0

⊤
q1,1

a

b

c

d

b

a

d

c

Figure A.2: Every state and its 4 transitions in N (left)
turn into 8 transitions in T2 (right). All transitions not drawn
in the right figure lead to q⊥, a sink state labelled ⊥.

We now proceed to define the reduction formally. We construct T1 independently of N , as
depicted in Figure A.1, containing 4 states. For every x ∈ Λ we have T1(x) = ⊤|x|, and for every
other x /∈ Λ we have T1(x) = ⊤m⊥|x|−m where m is the length of the maximal prefix of x in
(ab+ cd)∗(a+ c+ ϵ).

We proceed to construct T2. We can think of the outgoing transitions from every state q as
δ(q, 0) = {q0,0, q0,1} and δ(q, 1) = {q1,0, q1,1} (unless N has no outgoing transitions on one of
the letters, see below). We obtain T2 from N by introducing 4 new states qa, qb, qc, qd for every
state q ∈ Q, and setting the transitions and labels as depicted in Figure A.2. In case N does
not have a transition on e.g., 0 from q, then instead of going to qa or qb, we proceed to a new
state q⊥ labelled ⊥, which is a sink state. In addition, q⊥ is reached upon any transition not yet
defined. Observe that for every x ∈ Λ we have T2(x) = ⊤m⊥|x|−m for some 0 ≤ m ≤ |x| (since
q⊥ is a sink).

We now claim that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2. For the first direction, assume L(N) =
{0, 1}∗. Observe that T2 ≺2,Λ T1 independently: for every x ∈ (ab + cd)∗, denote T2(x) =
⊤m⊥|x|−m, then we can construct x′ ≍2 x such that T1(x′) = ⊤m⊥|x|−m by leaving x unchanged
m steps, and then permuting the letters such that the run of T1 moves to the sink labelled ⊥
(indeed, observe that m must be even by the construction of T2, and hence T1 can permute e.g.,
ab to ba in order to start outputting ⊥ on an even step).

Next, we show that T1 ≺2,Λ T2. Consider x ∈ (ab + cd)∗, so that T1(x) = ⊤|x|, and let
w ∈ {0, 1}∗ be the word obtained from x by identifying ab with 0 and cd with 1. Since L(N) =
{0, 1}∗, there exists a run (and hence an accepting run) of N on w, denoted s0, s1, . . . , sn. We
now obtain x′′ ≍2 x by identifying each letter 0 in x with either ab or ba, and each letter 1 with
cd or dc, such that the run of T2 on x′′ simulates the run of N on w. Thus, T2(x′′) = ⊤|x′′|, and
T2(x′′) ≍2 T1(x), so we are done.

Conversely, if T1 ≡2,Λ T2, then in particular T1 ≺2,Λ T2. We claim that L(N) = {0, 1}∗.
Consider w ∈ {0, 1}∗. Dually to the above, we obtain from w a word x ∈ (ab + cd)∗ by

46

identifying 0 with ab and 1 with cd, so that T1(x) = ⊤|x|. Since T1 ≺2,Λ T2, there exists x′ ≍2 x

such that T2(x′) = ⊤|x|. Observe that x′ must be obtained from x by (possibly) changing each ab
to ba and each cd to dc. In particular, the run of T2 on x′ induces a run of N on w by identifying
both ab and ba as 0 and both cd and dc as 1. This gives w ∈ L(N), so L(N) = {0, 1}∗, which
concludes the proof. ◀

A.2 Proof of Theorem 5.10

In order to show that existential round equivalence is PSPACE-hard, we build upon the reduc-
tion in the proof of Theorem 4.7: we again show a reduction from the universality problem for
NFAs over alphabet {0, 1} where all states are accepting and the degree of nondeterminism is
at most 2 (cf. Lemma A.1).

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and σ ∈ {0, 1}.
We construct two transducers T1 and T2 over input and output alphabets ΣI = {a, b, c, d,#}
and ΣO = {⊤,⊥} and Λ ⊆ Σ∗

I , such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.
Intuitively, the idea is to use a similar encoding of {0, 1} in {a, b, c, d} whereby 0 corresponds

to either ab or ba and 1 to cd or dc. Now, however, since k is not fixed to 2, we also allow
arbitrary padding with sequences of ##.

Set Λ = (ab + cd + ##)∗ (given as a 5 state DFA). We construct T1 and T2 similarly to
the proof of Theorem 4.7, by adding self-cycles of length 2 upon reading ##, from every state
except the sink q⊥. See Figures A.3 and A.4 for an illustration.

⊤ ⊤⊤

⊤

⊥

ac #

b, d

b

a, c, d,#

d

a, b, c,#

#

a, b, c, d

Figure A.3: The transducer T1 in the proof of Theorem 5.10.

q

q0,0

q0,1

q1,0

q1,1

0

0

1

1
q

q# ⊤

qa

⊤

qb

⊤

qc

⊤

qd

⊤ q0,0

⊤ q0,1

⊤q1,0

⊤q1,1

a

b

c

d

#

b

a

d

c

#

Figure A.4: Every state and its 4 transitions in N (left) turn into 10 transitions in T2 (right).
All transitions not drawn in the right figure lead to q⊥, a sink state labelled ⊥.

We claim that L(N) = {0, 1}∗ iff there exists k > 0 such that T1 ≡k,Λ T2. For the first

47

direction, assume L(N) = {0, 1}∗, then we can show that T1 ≡2,Λ T2 by following the proof
of Theorem 4.7 line for line, with the addition that blocks of the form ## leave the state of
both T1 and T2 unchanged.

For the converse direction, assume T1 ≡k,Λ T2, and in fact we only assume T1 ≺k,Λ T2 for
some k > 0. We further assume w.l.o.g. that k is even, otherwise we can just take 2k (since we
also have T1 ≺2k,Λ T2).

Consider w ∈ {0, 1}∗. We obtain from w a word x ∈ (ab+ cd+ ##)∗ by identifying 0 with
ab#k−2 and 1 with cd#k−2. Observe that T1(x) = ⊤|x|, and that x is indeed a k-round word in
Λ, with each round being either ab#k−2 or cd#k−2.

Since T1 ≺k,Λ T2, there exists x′ ≍k x such that T2(x′) = ⊤|x|. Observe that x′ must be
obtained from x by (possibly) changing each ab to ba and each cd to dc, and by shifting the
location of this pair within the # symbols. Indeed, otherwise the run of T2 on x′ ends in q⊥. In
particular, the run of T2 on x′ induces a run of N on w by identifying both ab and ba as 0 and
both cd and dc as 1. Thus, w ∈ L(N), so L(N) = {0, 1}∗, and the proof is concluded. ◀

48

Appendix B

Variations of Round Simulation

▶ Example B.1. The transducers in Figure B.1 satisfy T1 ≺s,p
2 T2 and T1 ≺p,s

2 T2. This is proven
in Table B.1, which considers all possible forms of each round and gives round equivalent words
xs ≍s

2 x and xp ≍p
2 x that satisfy the requirements of the definitions.

q0start ∅

∅

∅

∅

{0, 1} behave like q0

{0} behave like q0

∅

{0, 1}

{0}
{1}

{0, 1}
∅

{1
}

{0
}

elseelseelse
else

q0start {0}

{0}

∅

∅

{1} behave like q0

∅ behave like q0

{0, 1} behave like q0

{0} behave like q0

∅

{0, 1}

{0}

{1}

{0, 1}

∅

{1}

{0}

else
else

else
else

Figure B.1: Transducers T1 (up) and T2 (down) in Example B.1, satisfying T1 ≺s,p
2 T2 and

T1 ≺p,s
2 T2, but T1 ̸≺s,s

2 T2. See Table B.1 for a table summarizing the possible inputs and
outputs for T1.

However, T1 ̸≺s,s
k′ T2 for any k′ > 0. Indeed, consider the word x = {0, 1}∅k′−1 having output

T (x) = ∅{0, 1}∅k′−2. For T2 to output the letter {0, 1}, it must see one of the input letters {0}
and {1}, since the only state labelled {0, 1} has two incoming transitions with {0} and {1}. But
any x′ ≍s

k′ x will not contain the letters {0} and {1}, so T1(x) ̸≍s
k′ T2(x′). Therefore T1 ̸≺s,s

k′ T2.

49

Table B.1: A table summarizing the outputs of transducer T1 in Example B.1 on words x
of length 2, and round equivalent words xs and xp that satisfy the requirement of x′ in the
definition of T1 ≺s,p

2 T2 and T1 ≺p,s
2 T2.

x T1(x) xs : T2(xs) ≍p
2 T1(x) T2(xs) xp : T2(xp) ≍s

2 T1(x) T2(xp)

∅∅ ∅{0} ∅∅ {0}∅ ∅∅ {0}∅
∅{0} ∅{0} ∅{0} {0}∅ ∅{0} {0}∅
∅{1} ∅{0} ∅{1} {0}∅ ∅{1} {0}∅

∅{0, 1} ∅{0, 1} ∅{0, 1} {0}{1} {0}{1} ∅{0, 1}

{0}∅ ∅{0} {0}∅ ∅{0} {0}∅ ∅{0}
{0}{0} ∅{0} {0}{0} ∅{0} {0}{0} ∅{0}
{0}{1} ∅{0, 1} {0}{1} ∅{0, 1} {0}{1} ∅{0, 1}

{0}{0, 1} ∅{0} {0}{0, 1} ∅{0} {0}{0, 1} ∅{0}

{1}∅ ∅{0} {1}∅ ∅{0} {1}∅ ∅{0}
{1}{0} ∅{0, 1} {1}{0} ∅{0, 1} {1}{0} ∅{0, 1}
{1}{1} ∅{0} {1}{1} ∅{0} {1}{1} ∅{0}

{1}{0, 1} ∅{0} {1}{0, 1} ∅{0} {1}{0, 1} ∅{0}

{0, 1}∅ ∅{0, 1} {0, 1}∅ {0}{1} {0}{1} ∅{0, 1}
{0, 1}{0} ∅{0} {0, 1}{0} {0}∅ {0, 1}{0} {0}∅
{0, 1}{1} ∅{0} {0, 1}{1} {0}∅ {0, 1}{1} {0}∅

{0, 1}{0, 1} ∅{0} {0, 1}{0, 1} {0}∅ {0, 1}{0, 1} {0}∅

50

Bibliography

[Alm20] S. Almagor. Process symmetry in probabilistic transducers. In 40th International
Conference on Foundation of Software Technology and Theoretical Computer Sci-
ence, FSTTCS, 2020.

[Alu10] R. Alur. Expressiveness of streaming string transducers. In IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, 2010.

[Bok18] Udi Boker. Why these automata types? In Gilles Barthe, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22. 22nd International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, volume 57 of EPiC Series in Computing,
pages 143–163. EasyChair, 2018. url: https://easychair.org/publications/
paper/G5dD.

[BS73] J. A. Brzozowski and I. Simon. Characterizations of locally testable events. Discrete
Mathematics, 4(3):243–271, 1973.

[BT76] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophan-
tine equations. Proceedings of the American Mathematical Society, 55(2):299–304,
1976.

[Cam+99] P. J. Cameron et al. Permutation groups, volume 45. Cambridge University Press,
1999.

[CEFJ96] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal methods in system design, 9(1-2):77–104, 1996.

[CHVB18] E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem, editors. Handbook of Model
Checking. Springer, 2018.

[Coo72] D. C Cooper. Theorem proving in arithmetic without multiplication. Machine in-
telligence, 7(91-99):300, 1972.

[ES96] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal methods in
system design, 9(1-2):105–131, 1996.

[FPS15] H. Fernau, M. Paramasivan, and M. L. Schmid. Jumping finite automata: char-
acterizations and complexity. In International Conference on Implementation and
Application of Automata, pages 89–101. Springer, 2015.

51

https://easychair.org/publications/paper/G5dD
https://easychair.org/publications/paper/G5dD

[FR74] M.J. Fischer and M.O. Rabin. Super-exponential Complexity of Presburger Arith-
metic. Project MAC: MAC technical memorandum. Massachusetts Institute of
Technology Project MAC, 1974, pages 27–41. url: https://books.google.co.
il/books?id=ijoNHAAACAAJ.

[Haa18] C. Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–
82, 2018. url: https://dl.acm.org/citation.cfm?id=3242964.

[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. 8th
Conference on Concurrency Theory, volume 1243 of Lecture Notes in Computer
Science, Warsaw. Springer-Verlag, July 1997.

[Hof20] S. Hoffmann. State complexity bounds for the commutative closure of group lan-
guages. In International Conference on Descriptional Complexity of Formal Sys-
tems, pages 64–77. Springer, 2020.

[HW87] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 13–26, 1987.

[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal methods in
system design, 9(1-2):41–75, 1996.

[KRS09] Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On NFAs where all states are
final, initial, or both. Theoretical Computer Science, 410(47-49):5010–5021, 2009.

[LNRS16] A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry patterns. In
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, pages 455–475. Springer, 2016.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd
Int. Joint Conf. on Artificial Intelligence, pages 481–489. British Computer Society,
1971.

[MP19] Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers (In-
vited Talk). In Rolf Niedermeier and Christophe Paul, editors, 36th International
Symposium on Theoretical Aspects of Computer Science (STACS 2019), volume 126
of Leibniz International Proceedings in Informatics (LIPIcs), 2:1–2:21, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. url: http :
//drops.dagstuhl.de/opus/volltexte/2019/10241.

[MZ12] A. Meduna and P. Zemek. Jumping finite automata. International Journal of Foun-
dations of Computer Science, 23(07):1555–1578, 2012.

[Opp78] D. C. Oppen. A 222pn upper bound on the complexity of presburger arithmetic.
Journal of Computer and System Sciences, 16(3):323–332, 1978.

[Par66] R. J. Parikh. On context-free languages. J. of the ACM, 13(4):570–581, 1966.

[VSS05] K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn
clauses. In International Conference on Automated Deduction, pages 337–352.
Springer, 2005.

52

https://books.google.co.il/books?id=ijoNHAAACAAJ
https://books.google.co.il/books?id=ijoNHAAACAAJ
https://dl.acm.org/citation.cfm?id=3242964
http://drops.dagstuhl.de/opus/volltexte/2019/10241
http://drops.dagstuhl.de/opus/volltexte/2019/10241

לדרוש עשויים משרנים של אחרים סוגים לבסוף, אולטימטיבית. סימולציה שהגדרנו איפה אינסופיות, מילים של

הסתברותיים. משרנים כגון סימולציה, של שונות גרסאות

אחד פער זה. מחקר לאורך פתוחים פערים כמה נותרו סימטריה, של השונים במושגים החקר הרחבת מלבד

מיפוי את הצגנו מזאת, יתרה שהוצגו. לאלגוריתמים התחתון והחסם הסיבוכיות של הנאיבי הניתוח הינו ניכר

מודל למצוא נוכל האם השאלה ונשאלת המסמלץ, למשרן מתאימה למילה קלט מילת כל שממפה הסימולציה

המיפוי. את שמגדיר תת-טיורינג

נבחרים כלים האוטומטים. ותורת המספרים תורת האלגברה, הלוגיקה, מעולם וטכניקות בכלים משתמשים אנו

ומשפט מאלגברה ראשוניים מספרים של תכונות מלוגיקה, (Presburger arithmetic) פרסבורגר חשבון כוללים

המספרים. מתורת פריך

iv

של תיאור נותן אות של טיפוס באוטומטים. אותיות של הטיפוס הוא הראשון בכלים. משתמשים אנו כאן גם

אנו סגור-תמורות, באוטומט האותיות בסוגי בהתחשב נקראת. זו אות כאשר משתנה המכונה מצב שבו האופן

האוטומט. של הטיפוס״ ״פרופיל ב- מכנים שאנו באוטומט, שנצפו הטיפוסים כל קבוצת על לדבר עוברים

סופי מספר ישנו וגדלים. הולכים סיבוב אורכי עבור סגור-תמורות אוטומטי של הטיפוס בפרופילי מעוניינים אנו

מופיעים לא שלאחריו כלשהו, סיבוב אורך שיש טוענים אנו עוד ריבוי. כדי עד טיפוס, לפרופילי אפשרויות של

זה לראות. הולכים שאנו הטיפוס פרופילי כל את נראה כבר אליו, בהגעתנו כלומר, חדשים. טיפוס פרופילי

ופותרים פרסבורגר, בחשבון לבעיה שלו תרגום ידי על הזה המשפט את מוכיחים אנו הבא: לכלי אותנו לוקח

בלוגיקה. למחקר הודות אותו

הטיפוס פרופילי אם הזו: הסופית בתוצאה התבוננות ידי על שלנו, המטרה את בעצם לנו נותן זה סיבוב אורך

סגור- אוטומטי של השפות של ההכלה אז ,T2 ו- T1 עבור גם המקרה זה ואם ,k′ ו- k סיבוב לאורכי שווים

סיבוב אורך עבור מתקיימת קבוע) סיבוב באורך סיבובית סימולציה של הבעיה (כלומר T2 ושל T1 של תמורות

הינה k′ ו- k סיבוב אורכי עם סיבובית סימולציה של הבעיה כלומר, .k′ עבור מתקיימת היא אם ורק אם k

שטופלה קטנה להסתייגות עד ההוכחה, את מסיים זה שווים. שלהם הטיפוס שפרופילי פעם בכל לשניהם, חופפת

בעבודה. היטב

והינה ידועה אשר ,Round Robin בשם התזמון מערכת של פשוט למימוש במיוחד נתייחס אנו העבודה, לאורך

משמשת היא ולכן ניכר, באופן בסיבובים סימטריה מפגינה זו מערכת המחשב. של ההפעלה במערכת אף בשימוש

השונות. הבעיות בפתירת אינטואיציה למתן ואף ההגדרות להדגמת מאלפת דוגמה

במשרנים סימטריה של נוספים סוגים

סימטריות והן בסיבובים סימטריה של וריאציות הן נוספים, מושגים מספר זו בעבודה ונדונים מוצגים כן גם

.(Parikh) פריך ע״פ בסיבובים סימטריה מכונה בסיבובים סימטריה של הווריאציות אחת אחרות. בסביבות

תהליך שכל כך – השונים לתהליכים מזהים או – אותות של קבוצה תת מהווה קלט אות כל זו, וריאציה תחת

גם אלא סיבוב, בכל האותיות את להזיז רק לא לנו מותר תמורה, מבצעים וכאשר האותות, אחד עם מזוהה

בסיבוב. האותיות בין הבודדים האותות את לערבב

עבודה אינסופי. קלט בעלי משרנים אחרות, חישוב ובמכונות שונות בסביבות סימטריות בוחנים גם אנו כאמור,

ללא קלט לקרוא ממערכת מצופה שלעיתים מהרעיון נובע זה פורמלי; באימות נפוצה הינה אינסופיות מילים עם

כבר, שנקרא הקלט כל פני על תתפרש היא צורות: משתי אחת ללבוש יכולה כאלה במערכות וסימטריה הפסקה,

האחרון. המקרה את שמשיגה סימטריה של סוג לוכדת אולטימטיבית סימטריה העתיד. אל תרחיב שהיא או

הקלט על הפלט של לתמורה זהה π(x) על T של הפלט ,x קלט מילת כל עבור אולטימטיבית, בסימטריה

כלשהי. סופית רישא מלבד ,π(T (x)) המקורי

המשך לעבודת הצעות

מסגרת של דוגמה רק הינה בסיבובים, סימטריה על שלה היישום ובמיוחד בסיבובים, סימולציה כי לציין חשוב

בקלט. מקומיים שינויים תחת משרנים של היציבות את מודדים אנו שבאמצעותה סימטריה, של יותר כללית

כאלה הרחבות כמה הקיימים. את ולהרחיב וסימולציה סימטריה של נוספים מושגים לחקור מקום יש בפרט,

k באורך הזזה בחלון משתמשים אנו שבה בחלונות, סימולציה של הרעיון הוא אפשרי כיוון בעבודה. ונדונו הוצגו

לסביבה עניין יש בנוסף, מעלה. המתוארת פריך ע״פ בסיבובים סימטריה הוא נוסף וכיוון זרים, סיבובים במקום

iii

ב- סיבוב בכל האותיות את לערבב נוכל ,x קלט מילת כל עבור אם k של בסיבובים T1 משרן מסמלץ T2 משרן

נותנים אנו למעשה, .x על T1 של הפלט של ערבוב עצמה היא הערבוב לאחר המילה על T2 של שהפלט כך ,x

.Λ נתונה רגולרית לשפה מוגבל להיות T1 ל- לקלט גם מאפשרים שאנו בכך משוכללת, יותר קצת הגדרה

של בסיבובים T1 את מסמלץ T2 האם הן בסיבובים סימולציה של מההגדרה הנוצרות ההכרעה בעיות בהתאם,

כלשהו). k עבור (קרי, קיומי בכמת k עבור ו-(2) כקלט, ניתן k כאשר (1) ,k

בהמשך נדון והוא הסימולציה מיפוי נקרא T2 עבור המעורבב הקלט לבין T1 עבור הקלט מילות בין המיפוי

זו. עבודה

ומיפוי והתחתון העליון הגבול ופתרונותיהן, ההחלטה בעיות – בסיבובים וסימולציה בסיבובים סימטריה

סימטריה, של מושגים כמה עוד ונדונים מוצגים בנוסף, זו. עבודה של העיקרית התרומה הם – הסימולציה

מילים. אינסוף של בהגדרה וסימטריה עגולה סימטריה של וריאציות כולל

ההכרעה בעיות של לפתרון תקציר

לאוטומט הדומה מצבים מכונת הינו (transducer) משרן עובדים. אנו שאיתו העיקרי המודל את תחילה נגדיר

פלט מחזירה w קלט מילת על משרן של וריצה פלט, אות מוצמדת מצב שלכל לכך פרט דטרמיניסטי, סופי

במשרן. מילים של לקבלה משמעות אין לאוטומטים, בניגוד בהם. עברה w שהמילה המצבים לפי אורך, באותו

הסימטריה בעיית עבור פתרון נקבל גם ומכאן בסיבובים, סימולציה של ההכרעה בעיות את פותרים אנו כאמור,

בסיבובים.

סופי אוטומט שהוא כלי בהגדרת אותה לפתור מתחילים אנו שניהם. מבין הקל המקרה היא הראשונה הבעיה

.(Permutation Closure) סגור-תמורות מכנים שאנו אי-דטרמיניסטי

נותן המקורי במשרן מעברים k של רצף כל בו, .k הסיבוב ואורך T מהמשרן מתקבל סגור-תמורות אוטומט

למעשה שהאוטומט נותן זה האותיות. לסדר מודע שאינו מעבר זהו כן, על יתר החדש. באוטומט יחיד מעבר

קלט מילות זוג אותו של התמורות שכל משמע תמורות, תחת סגירות שמו: את בחרנו שלפיה התכונה על עונה

לזו. זו זהה באופן מתנהגות ופלט

הפלט אותיות את מוציא שבעצם Trace בשם דטרמיניסטי ביניים באוטומט השתמשנו זה, אוטומט לבנות כדי

הנכנסות. לקשתות מהמצבים

סימולציה ,k סיבוב ואורך T2 ,T1 נתונים משרנים עבור כי האומרת ללמה מגיעים אנו זה, כלי על בהישען

.T2 ושל T1 של סגור-תמורות אוטומטי של השפות בין הכלה יש אם ורק אם T2 ו- T1 בין מתקיימת בסיבובים

כלשהי תמורה שיש אומרת הזו ההכלה לו, המתאים והפלט T1 עבור קלט איזשהו נקבל אם אינטואיטיבית, אכן,

הנתון. הפלט של תמורה גם עצמו הוא שהפלט כך הקלט של

היא שהבעיה היא ישירה תוצאה אי-דטרמיניסטיים, אוטומטים של ההכלה לבעיית הבעיה את שצמצמנו מכיוון

PSPACE-שלמה. הינה שהבעיה מראים גם אנו למעשה, .PSPACE הסיבוכיות במחלקת

עושים אנו סיבובית. סימולציה מתקיימת שעבורו סיבוב אורך איזה יש אם שואלים אנו הקיומי, במקרה כעת,

חסם לנו נותן זה סיבובית. סימולציה מתקיימת שעבורו המינימלי הסיבוב לאורך עליון חסם מציאת ידי על זאת

להכרעה. לניתנת הבעיה את שהופך מה מולם, לבדוק צריכים שאנו האורכים לקבוצת סופי עליון

ii

תקציר

נתון. במפרט עומדת מערכת האם להכרעה פועלים אנו בה למערכות, אימות פרדיגמת היא מודלים בדיקת

שלהן. בהתנהגות או שלהן במבנה סימטריה של כלשהו סוג מפגינות תהליכים מרובות מערכות קרובות, לעתים

קיימת כאשר נגדם. נבדקות תהליכים מרובות מערכות אשר במפרטים גם כלל בדרך מתבטאת סימטריה

חלק להקל כדי האימות ואלגוריתם המעצב ידי על מנוצלת להיות יכולה היא במפרט, או במערכת סימטריה

סימטריות מערכות לדוגמה, המערכת. התנהגות לגבי תובנה לקבל כדי גם כמו מודלים, בדיקת של מהמורכבות

התהליכים. זהויות על באיטרציה בעבר צורך היה שבהם מייצגים במפרטים רק להשתמש למעצב מאפשרות

סימטריה. מפגינה נתונה מערכת אם להחליט מעוניינים אנו לפיכך,

אחרת. אופיינית התנהגות תופסת מהן אחת שכל שונות, בצורות לבוא ועשויה היטב מוגדר מושג אינה סימטריה

ואלפבית ,oj ו- ij מתאימים ופלט קלט אות יש j תהליך לכל בה תהליכים, בסימטריית מתמקדים אנו זו, בעבודה

התהליכים זהויות שבו לתרחיש מתייחסת תהליכים סימטריית בהתאמה. 2O ו- 2I הם המודל של והפלט הקלט

לקבל עשויה המערכת נוצר, {i1, i2} הקלט אם לדוגמה, התמרה. עברו כלומר, – מעורבבות להיות עשויות

שלה הפלטים אינטואיטיבי, באופן אם, תהליכים סימטריית מפגינה מערכת מכן, לאחר .{i7, i4} קלט למעשה

הן תהליכים סימטריית שמפגינות דטרמיניסטיות מערכות המזל, לרוע לקלטים. דומה בצורה התמרה עוברים

עבורן. מדי מגבילה תהליכים סימטריית שכן ביותר, תמימות

הקלט מילת בנוסף, משרן. הנקראת סופית מצבים מכונת ידי על ממודלים המפרט ואף המערכת שלנו, בהגדרה

בסיבובים סימטרי הינו T שמשרן ונאמר סיבובים, שנקראות קבוע באורך זרות מילים לתתי מחולקת המשרן של

לאחר בקלט סיבוב בכל האותיות את לערבב נוכל ,x קלט מילת וכל ,π אותות של תמורה כל עבור אם k של

של הפלט על התמורה תוצאת של ערבוב עצמו הוא x′ על T של שהפלט כך ,x′ לקבל כדי ,π(x) ההתמרה,

שהפלט כך המתומר, הקלט את לערבב דרך יש בסיבובים, סימטרי הוא T כאשר אחרות, במילים .x על T
תהליכים). בסימטריית ”הצפוי“ הפלט (שהוא המתומר הפלט של ערבוב הוא המתקבל

בסיבובים סימטריה המערכת. בהתנהגות אלא במבנה, מתחשבת לא שהיא בכך סמנטית היא בסיבובים סימטריה

הבאות: ההכרעה לבעיות מובילה

הוא T אם להחליט ועלינו ,k > 0 וקבוע T משרן לנו ניתן בסיבובים, סימטריה של הקבועה בבעיה ⋆
.k של בסיבובים סימטרי

T ש- כך k > 0 קיים אם להחליט ועלינו ,T משרן לנו ניתן בסיבובים, סימטריה של הקיומית בבעיה ⋆
.k של בסיבובים סימטרי הוא

ידי על היא ההחלטה לבעיות ניגשים אנו בה הדרך משרן. של תכונה מגדירה בסיבובים שסימטריה לב שימו

שנראה לאחר ואז, בסיבובים, סימולציה הנקרא משרנים, שני בין קשר של להגדרה סימטריה של ההגדרה תרגום

ככזו. אותה פותרים אנו בסיבובים, לסימולציה בסיבובים סימטריה לצמצם ניתן כי

i

המחשב. למדעי בפקולטה אלמגור, שאול ד"ר של בהנחייתו בוצע המחקר

במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המגיסטר מחקר תקופת

Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-letter transducers, full
version. ArXiv, abs/2105.01512, 2022.

Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-letter transducers. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL
2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, 3:1–
3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

במשרנים סמנטית סימטריה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

נסאר אבו אנטוניו

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2022 מאי חיפה התשפ"ב אייר

במשרנים סמנטית סימטריה

נסאר אבו אנטוניו

	List of Figures
	Abstract
	Notation and Abbreviations
	1 Introduction
	2 Preliminaries
	3 Round Simulation and Round Equivalence
	4 Deciding Fixed Round Simulation
	5 Deciding Existential Round Simulation
	5.1 Intuitive Overview
	5.2 Proof of Theorem 5.1
	5.3 Lower Bounds for Existential Round Simulation

	6 From Process Symmetry to Round Equivalence
	7 The Simulation Mapping
	8 Additional Notions of Symmetry and Simulation
	8.1 Variations of Round Symmetry and Round Simulation
	8.2 Symmetry over Infinite Words

	9 Conclusion and Open Questions
	A PSPACE Hardness
	A.1 Proof of Theorem 4.7
	A.2 Proof of Theorem 5.10

	B Variations of Round Simulation
	Bibliography
	Hebrew Abstract

