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Abstract

Concurrent multi-player games with ω-regular objectives are a standard model for sys-
tems that consist of several interacting components, each with its own objective. The
standard solution concept for such games is Nash Equilibrium, which is a “stable”
strategy profile for the players.

In many settings, the system is not fully observable by the interacting components,
e.g., due to internal variables. Then, the interaction is modelled by a partial information
game. Unfortunately, the problem of whether a partial information game has an NE
is, in general, undecidable. A particular setting of partial information arises naturally
when processes are assigned IDs by the system, but these IDs are not known to the
processes. Then, the processes have full information about the state of the system, but
are uncertain of the effect of their actions on the transitions.

We generalize the above setting and introduce Multi-Topology Games (MTGs) –
concurrent games with several possible transition functions, each transition function
is called a topology. At the start of the game, a topology is chosen, without players
knowing which one. We show that extending the concept of NE to these games can
take several forms. To this end, we propose two notions of NE: Conservative NE, in
which a player deviates if she can strictly add topologies to her winning set, and Greedy
NE, where she deviates if she can win in a previously-losing topology. We study the
properties of these NE, and show that the problem of whether a game admits them is
decidable.
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Chapter 1

Introduction

Concurrent multi-player games of infinite duration over graphs are a standard mod-
elling tool for representing systems that consist of several interacting components, each
having its own objective. Each player in the game corresponds to a component in the
interaction. In each round of the game each of the player chooses an action and the
next state of the game is determined by the current state and the vector of actions
chosen. An example of a concurrent game can be seen in Figure 1.1. A strategy for a
player is a mapping from the history of the game so far to the next action.

A strategy profile (i.e., a tuple of strategies, one for each player) induces an infinite
trace of states, and the goal of each player is to direct the game into a trace that satisfies
her specification. This is modeled by augmenting the game with ω-regular objectives
describing the objectives of the players.

Unlike traditional zero-sum games, here the objectives of the players do not nec-
essarily contradict each other. Accordingly, the typical questions about these games
concern their stability. Specifically, the most well-known stability measure is Nash
Equilibrium (NE): an NE is a strategy profile such that no single player can improve
her outcome by unilaterally deviating from the profile. The problem of whether a
multi-player game with ω-regular objectives has an NE was shown to be decidable
in [BBM15].

In many settings, the players only have partial information about the system, or
can view only certain parts of it. This happens when e.g., the system has private and
global variables, and the players model threads that can only view the global variables.
To this end, games with partial information have been extensively studied in various
forms [BMM+21; BMV17; CD10; CD14]. However, in contrast to the full-information
setting, the problem of deciding whether a partial-information multi-player game of
infinite duration has a Nash equilibrium is undecidable in the general case where there
are 3 or more players [FGR18] or in the case of stochastic games [UW10].

In this work, we introduce and study Multi-Topology Games (MTG). Intuitively, an
MTG is a concurrent multi-player game with several transition functions (i.e., topolo-
gies). Then, players are fully aware of the possible topologies of the game, but do not
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know which topology they currently play on. Thus, MTGs capture a restricted form of
partial information.

As we now demonstrate, MTGs naturally model the sort of partial information that
arises in the context of process symmetry.

Example 1.0.1. Consider a virtual router with multiple ports. When the router is
initialized, several processes are plugged in. The router assigns each process to a port
id, but the id is not revealed to the processes. Each process attempts to send messages,
and its goal is to have its messages delivered (where some messages may be dropped
due to heavy traffic). While the processes know exactly how the router works, they do
not know which port they are assigned to. Therefore, their strategies must be oblivious
to their port number.

As a concrete example, consider the concurrent game in Figure 1.1. The players
are blue and red, and the router has two ports 1,2. In every round each player can
try to send (action 1), or wait (action 0). The labels on the edges describe the actions
of the players. The first is the action of the blue player, and the second is the action
of the red player. From ready, if only the player in Port i ∈ {1,2} tries to send, the
game transitions to sendi. If both players try to send, the router prioritizes the request
from Port 1. The objective of the player Port i is to visit sendi infinitely many times.
Note that sendi is colored according to the player that tries to reach it in each port
assignment. When both players know the port assignment, for example, blue →Port
1 and red →Port 2, then blue can win by always taking action 1, and red will lose
in any strategy. However, if the port assignment is not known then in order for either
player to win under both port assignments, the players must coordinate e.g., by taking
turns trying to send a message. Thus, a-priori, the game has two possible topologies:
Figure 1.1a and Figure 1.1b.

ready

start

send1 send2

00

10,11

01

(a) blue→Port 1, red→Port 2.

ready

start

send1 send2

00

01,11

10

(b) blue→Port 2, red→Port 1.

Figure 1.1: Router game with two players.

These type of settings are commonly referred to as process symmetry [CEFJ96;
ES96; ID93; LNRS16; Alm20], and have been studied in several contexts (e.g., model
checking with symmetry reductions). However, to our knowledge this setting has not
been studied in games. In Section 3.1 we demonstrate how MTGs can model the general
setting of process symmetry in games.
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Settings where a component might enter an interaction without knowing the exact
configuration of the system are common, for example, in interactions over networks
where connectivity is not known a-priory [GT07].

In an MTG, a strategy for a player maps sequences of states to an action, and hence
does not depend on a certain topology. Unlike standard games, a strategy profile in
an MTG no longer induces a single trace, but rather a set of traces, one per topology.
Thus, a player can no longer be said to be “winning” or “losing” in a strategy profile,
as this may vary between topologies. In particular, it is not clear how analogues of
Nash equilibrium and social optimum should be defined.

To this end, we propose two versions of Nash equilibria, Conservative NE (CNE)
and Greedy NE (GNE). In CNE we assume that players are conservative, that is, a
player might deviate only if the deviation leads to a better outcome in at least one
topology, without leading to a worse outcome in any topology. In this case, we only
consider deviations that lead to strictly better outcomes for a player. In GNE we
assume that players are greedy, that is, a player might deviate if she can improve her
outcome in a single topology, regardless of how it affects other topologies. GNE is useful
in cases where players might have unknown preferences over the different topologies. In
this case, we want to make sure that no player has a profitable deviation, under every
possible preference.

We study the properties of CNE and GNE and compare their strictness, showing
that a GNE is also a CNE, but the converse does not hold. We also compare their
properties to those of the standard notion of NE. Our main technical contribution is
showing that the problem of whether a game has a CNE is decidable in 2-EXPTIME,
and that the problem of whether a game has a GNE is decidable in EXPTIME.

Related Work A central work concerning NE in concurrent games is [BBM15], where
the problem of deciding whether a concurrent game admits an NE was studied for
various winning conditions. Apart from establishing tight complexity bounds, this work
also introduced the suspect game – a useful technique for reasoning about concurrent
games. Interestingly, the suspect game does not seem to be adaptable to reason about
MTGs, suggesting a fundamental difference between the models.

Zero-sum concurrent reachability games were studied in [DHK07], where fundamen-
tal techniques for reasoning about them were developed. We remark that the zero-sum
setting is technically very different to ours, due to the non-adversarial nature of the
players.

In distributed computing, the notion of anonymity [AGM02; GR07] is similar to
process symmetry, in that it considers a setting where processes are interchangeable.
But, in contrast to process symmetry, all processes run the same program. In our
discussion of process symmetry, players are allowed to play different strategies. Anony-
mous games [DP07] is another notion that resembles process symmetry. In this setting,
players are aware of their position in the game, but their objectives only depend on
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the number of actions of each type that were taken, and not on the exact action of
individual players.

A concurrent game can be formulated as a turn-based partial information game,
by players choosing their actions one by one, without revealing any information on
the actions that were chosen until all players have selected their actions, and only
then take the corresponding transition. Partial information games are more expressive
than concurrent games – not every partial information game can be represented as a
concurrent game. Partial information games were extensively studied, e.g., in [CD10;
RHDC07; CD14; BMM+21; BPRS17; DDG+10], typically in the zero-sum setting.

Finally, the work in [BMM+21] extends strategy logic [CHP10] with imperfect in-
formation. The authors show that, in general, the model checking problem for this
logic is undecidable, but it is decidable in some special cases. Strategy logic with im-
perfect information can be used for reasoning about MTGs. For more details refer to
Chapter 6.

Thesis organization In Chapter 2 we present the basic definitions of concurrent
games. In Chapter 3 we formally define MTGs, introduce two notions of equilibria
for them, and study their properties. In Chapter 4 we give our main technical result,
establishing the decidability of detecting CNE in MTGs. In Chapter 5 we establish the
decidability of detecting GNE. In Chapter 6 we show how strategy logic with imperfect
information can be used for reasoning about MTGs. Finally, in Chapter 7 we discuss
our results and some extensions, and detail future directions.
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Chapter 2

Preliminaries

A concurrent game is a tuple G = ⟨Pla,S, s0,Act, δ, (αp)p∈Pla⟩ with the following compo-
nents. Pla is a finite set of players, S is a finite set of states, s0 ∈ S is an initial state,
Act is a finite set of actions. The transition function δ ∶ S×ActPla → S maps a state and
an action profile (i.e., a = (ap)p∈Pla ∈ ActPla) to the next state. αp ⊆ Sω is the objective
of player p.

A play of G is an infinite sequence of states ρ = s0, s1, . . . ∈ Sω such that for every
step i ∈ N there exists an action profile a such that si+1 = δ(si,a). For k ≥ 1 we denote
the length-k prefix of ρ≤k = s0, . . . , sk−1 ∈ S+. We denote by Inf(ρ) the set of states that
occur infinitely often in ρ.

In this work we focus on parity objectives. A parity objective α is defined by a
priority function over the states of the game Ω ∶ S → {0, . . . , d} for some d ∈ N. For
a state s ∈ S, Ω(s) is called the priority or rank of s. A play ρ satisfies α if the
minimal priority of the states in Inf(ρ) is even. The objective α = Parity(Ω) ⊆ Sω is
the set of plays that satisfy the above condition. We mostly use the parity function
implicitly, and so we do not include Ω in the description of G. We chose to focus on
parity objectives since other types of ω-regular games can be translated into games
with parity objectives.

The description size of G, denoted ∣G∣ is the number of bits required to represent
the components of G.

Remark. Game representation. Note that we assume an explicit representation of the
transition function as a table. In particular, we describe for every state the transition
on every action profile in ActPla. Thus, the size of the transition functions is exponential
in ∣Pla∣. This is in contrast with a more succinct representation, i.e., representing the
transition function as a circuit. This assumption is common in the literature [BBM15].
We take it to simplify the complexity analysis of our solution.

A history of G is a finite prefix of a play h ∈ S+. A strategy for Player p is a
function σ ∶ S+ → Act that maps a history to the next action of Player p. A strategy
profile σ = (σp)p∈Pla is vector of strategies, one for each player. We denote the set of all
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strategies by ΣG and the set of all strategy profiles by ΣPla
G (we omit the subscript G when

it is clear from context). A strategy profile σ can be thought as a function that maps
histories to action profiles: given a history h ∈ S+ we have σ(h) = (σp(h))p∈Pla ∈ ActPla.

For a strategy profile σ we define its outcome to be the infinite sequence of states
(i.e. play) in G that is taken when all the players follow their strategies in σ. Formally,
outG(σ) = s0s1 . . . ∈ Sω where s0 is the initial state, and for every i ≥ 1 we have
si = δ(si−1,σ(s0, . . . , si−1)). Consider a play ρ ∈ Sω. The set of winners in ρ is the set
of players whose objectives are met in ρ. Formally, WinG(ρ) = {p ∈ Pla ∣ ρ ∈ αp} ⊆ Pla.
The set of winners in a strategy profile σ is then WinG(σ) =WinG(outG(σ)). Player p
is said to be losing if she is not winning.

Remark. Action visibility. Note that strategies are defined to only observe the history
of visited states, and not the history of actions taken by the other players. This is a
standard and natural assumption [BBM15; CD14] for concurrent models. There are,
however, works (e.g., [AAK15]) where players can view the entire action history. The
latter approach is slightly easier to reason about, as players have full information on
the game progress. In [AAK15] it was shown that assuming visible actions reduces the
complexity of the NE existence problem for parity games from being PNP

∣∣ -complete to
being NP-complete. We expect a similar effect in our setting.

A strategy profile σ is a Nash Equilibrium (NE) if, intuitively, no single player can
benefit from unilaterally changing her strategy. Since the objectives in our setting are
binary, “benefiting” amounts to moving from the set of losers to the set of winners. We
refer to such a change as a beneficial deviation. Formally, consider a strategy profile σ,
a player p ∈ Pla and a strategy σ′p ∈ ΣG for Player p. We denote by σ[p ↦ σ′p] ∈ ΣPla

the strategy profile obtained from σ by replacing σp with σ′p. Then, σ is an NE if for
every player p ∈ Pla and every strategy σ′p ∈ ΣG for Player p, if p ∈ WinG(σ[p↦ σ′p])
then p ∈WinG(σ). Viewed contrapositively: if p loses when G is played with σ, then p
also loses after changing her strategy.
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Chapter 3

Multi-Topology Games

An MTG is a tuple G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩ where Pla, S, s0,
Act, are the same as in concurrent games. Top is a finite set of topologies, and for every
t ∈ Top we have a transition function δt ∶ S×ActPla → S and objective αt,p ⊆ Sω for every
player p ∈ Pla. An MTG can be thought of as a tuple of games over the same states,
players and actions. That is, for t ∈ Top, we define Gt = ⟨Pla,S, s0,Act, δt, (αt,p)p∈Pla⟩ to
be the concurrent parity game obtained by fixing the transition function to δt and the
objective for Player p to αt,p.

Crucially, players are assumed to have no a-priori information on which topology
is selected when the game is played. This is captured in the definition of strategies:
a strategy for Player p is identical to the setting of concurrent parity games, i.e.,
σp ∶ S+ → Act. This lifts to strategy profiles and outcomes, as per Chapter 2. In
particular, a strategy σ in G can be applied to Gt for every t ∈ Top. Although players
have no information at the start of the game on which topology is played, they might
reason about the set of possible topologies as the game progresses. For example, if the
observed history is not possible in some topology, the player knows that this topology
is not played. This is captured implicitly in the way strategies are defined. Consider a
strategy profile σ ∈ ΣPla. The winning topologies of Player p is the set of topologies that
Player p wins in when G is played with strategy profile σ. Formally, WinTopp

G(σ) =
{t ∈ Top ∣ p ∈WinGt(σ)}.

3.1 Process Symmetry in Concurrent Games

As we discuss in Chapter 1, a central motivation for MTGs come from settings where
players plug in to the system without knowing their identity. This setting is commonly
referred to as process symmetry [CEFJ96; ES96; ID93; LNRS16; Alm20]. Symmetry in
games was studied in [TV19; Ste11; BFH11; Ham13] for strategic form games, which
are games with a single turn. In [BMV17; Ves12], symmetry in concurrent games was
studied by imposing restrictions on the game structure. We consider a different setting,
where processes 1, . . . , k log into a system described as a concurrent game, but the index
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of the action controlled by each process is not revealed to the processes. This setting
is naturally modelled as an MTG, as follows.

Consider a concurrent game G = ⟨Pla,S, s0,Act, δ, (αp)p∈Pla⟩ with k ≥ 2 players,
and that Pla = {1, . . . , k}. We obtain from G an MTG with k! topologies by let-
ting each topology correspond to a different permutation of the players. Formally,
consider a permutation π ∈ Sk, were Sk is the set of permutations over {1, . . . , k}.
For an action profile a ∈ ActPla we define π(a) = (aπ−1(1), . . . , aπ−1(k)). That is,
the action performed by Player i is taken at index π(i). We now obtain the MTG
Gπ = ⟨Pla,S, s0,Act,Sk, (δπ)π∈Sk

, (απ,p)π∈Sk,p∈Pla⟩ where Sk is the set of topologies, δπ is
obtained by applying π to the action profile of the players, that is, for s ∈ S and a ∈ ActPla

we have δπ(s,a) = δ(s, π(a)). Finally, the objective of Player p is απ,p = απ(p). Fig-
ure 1.1 is an example of such game.

3.2 Solution Concepts

Recall that in NE, a beneficial deviation moves a player from losing to winning. In
MTGs, however, winning is no longer binary. Indeed, a strategy profile associates with
each player a set of winning topologies. Thus, the meaning of “beneficial deviation”
becomes context dependent. We introduce and study two notions of equilibria for MTGs
that lie on two “extremities”: in the conservative approach, a deviation is beneficial if
it strictly increases (w.r.t. containment) the set of winning topologies. In the greedy
approach, a deviation is beneficial if a previously-losing topology becomes winning. We
now turn to formally define and demonstrate these notions.

Conservative NE A conservative NE (CNE) is a strategy profile σ where no player
can deviate from σ and have her winning topologies be a strict superset1 of her winning
topologies when obeying σ. Formally, σ ∈ ΣPla is a CNE if the following holds:

∀p ∈ Pla ∀σ′p ∈ Σp
G ((∀t ∈ Top p ∈WinGt(σ[p↦ σ′p])→ p ∈WinGt(σ))∨

(∃t ∈ Top p ∉WinGt(σ[p↦ σ′p]) ∧ p ∈WinGt(σ)))

Equivalently, this condition can be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′p ∈ Σp
G ¬(WinTopp

G(σ) ⊊WinTopp
G(σ[p↦ σ′p]))

We refer to this notion as conservative since a deviating player wants to conserve
her existing winning strategies.

Greedy NE A greedy NE (GNE) is a strategy profile σ where no player can unilat-
erally deviate and win in a previously-losing topology. Formally, σ ∈ ΣPla is a GNE if

1The relation ⊊ means “strictly contained”.
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the following holds:

∀p ∈ Pla ∀σ′p ∈ Σp
G ∀t ∈ Top (p ∈WinGt(σ[p↦ σ′p])→ p ∈WinGt(σ))

Equivalently, this condition can also be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′p ∈ Σp
G (WinTopp

G(σ[p↦ σ′p]) ⊆WinTopp
G(σ))

The latter formulation shows that in a GNE, for every player and for every deviation,
the player’s winning topologies when deviating are a subset of the player’s winning
topologies when obeying σ. It refer to this notion as greedy since it assumes that
a player deviates if she improves her outcome in a single topology, disregarding the
outcome in other topologies.

Example 3.2.1. CNE and GNE. Recall the router game from Figure 1.1. The strategy
profile where Player blue repeatedly plays (0,0,1,1)ω and red plays (1,1,0,0)ω is a
CNE, since the set of winning topologies of this profile is {1,2} for both players. Thus,
no deviation can win in strictly more topologies.

Note that the same strategy profile is also a GNE, since every set of winning topolo-
gies is a subset of {1,2}.

Remark. Additional notions of NE. CNE and GNE are based on the ⊆ preorder on the
sets of topologies, 2Top. In Chapter 7 we discuss other notions of NE in MTGs.

3.3 Properties of CNE and GNE

We start by examining some properties and relationships between the notions of CNE
and GNE, as well as their relation to standard NE.

Consider an MTG ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. The following ob-
servation is immediate from the definitions of GNE and CNE, since if there is only a
single topology, the MTG collapses into a concurrent game.

Observation 3.3.1. If Top = {t}, i.e. there is only a single topology t, then the
definitions of NE in Gt coincides with that of CNE and of GNE in G.

Next, we observe that GNE is a stricter notion than CNE. Indeed, a beneficial
deviation in the conservative setting (namely increasing the set of winning topologies)
implies a beneficial deviation in the greedy setting (namely winning in a previously-
losing topology). Contrapositively, if there is no greedy beneficial deviation, there is
also no conservative beneficial deviation. We thus have the following.

Observation 3.3.2. Let G be an MTG. If σ is a GNE in G then σ is a CNE in G.

The following example shows that the implication of Observation 3.3.2 is strict. That
is, there are MTGs with a CNE but without a GNE.
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s0

start

s1 s2
1 2

(a) t1

s0

start

s1 s2
2 1

(b) t2

Figure 3.1: A single player MTG with two topologies, t1 and t2. In both topologies,
the objective of the player is to reach s1.

Example 3.3.3. CNE without GNE. Consider the single-player game depicted in Fig-
ure 3.1. The outcome of the game depends only on the first action that the player
takes and the topology that the game is played in. If the player takes action 1, then the
set of winning topologies is {t1}. If the player takes action 2, then the set of winning
topologies is {t2}. Since {t1} /⊆ {t2} and {t2} /⊆ {t1}, there is no GNE in the game, as
the player can switch strategies from t1 to t2 and vice versa to win in a previously-losing
topology.

However, since there is no strategy for the player such that the set of winning
topologies is {t1, t2} (the only strict superset of {t1} and {t2}), then every strategy is
a CNE.

Remark. Best-response dynamics in GNE. Example 3.3.3 demonstrates that, in stark
contrast to NE, an MTG might not have a GNE even when there is only a single player.
This has to do, in particular, with the notion of best-response dynamics: in standard
games, one can approach an NE by starting from some profile, and repeatedly letting
players deviate to their best-response strategy, until this process converges. While this
does not always converge, it does so for a large class of games (e.g., finite-potential
games [NRTV07]).

Thus, Example 3.3.3 shows that best-response does not converge even for a single
player in MTGs, whereas it does converge for a single player both for standard NE,
as well as in CNE for MTGs. Indeed, the best-response of a single player in the
conservative setting will increase her set of winning topologies to the maximum, and
from there she will no longer have incentive to deviate.

Remark 4 reflects the intuition that a GNE must be stable in each topology sepa-
rately. That is, it captures the notion “NE on all topologies”, in the following sense.

Observation 3.3.4. A GNE σ is also an NE in Gt for every t ∈ Top.

Indeed, if σ was not an NE in Gt for some t ∈ Top, then a player that deviates from
σ in Gt would similarly deviate from σ in G, greedily winning in the previously-losing
topology t.

In contrast, we now show that CNE is a more intricate notion, and might hold even
when there is no NE in the separate topologies.
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s0

start

s1 s2
00,11 01,10

(a) t1

s0

start

s1 s2
00,11 01,10

(b) t2

Figure 3.2: Symmetric XOR game.

Example 3.3.5. CNE without NE. Consider the Symmetric XOR game G depicted in
Figure 3.2. The players are blue and red. In topology t1, the objective of blue is to
reach s1, and the objective of red is to reach s2. In topology t2 the objectives of the
players are swapped. The game starts from s0. If both players take the same action,
then the game transitions to state s1 and gets stuck there. If the players take different
actions then the game transitions to s2 and gets stuck there. Note that neither Gt1

nor Gt2 have a NE, since if a strategy for a single player is fixed, the other player can
respond to it and win.

On the other hand, any strategy profile is a CNE, since every player always wins
in exactly one topology. Thus, there is no way for a player to deviate and get strict
superset of winning topologies.

There are MTGs without CNE. For example, every concurrent game G without an
NE can be viewed as an MTG with a single topology t1. Since there is no NE in
G, then for every profile σ there exists a player p that loses with σ, which cor-
responds to WinTopp

G(σ) = ∅ but p can deviate and win G, which corresponds to
WinTopp

G(σ[p↦ σ′p]) = {t1}. Since ∅ ⊊ {t1}, then σ is not a CNE.
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Chapter 4

Existence of Conservative NE is
Decidable

We now turn to our main technical contribution – showing that the existence of a CNE
is a decidable property.

Theorem 4.1. The problem of deciding, given an MTG G, whether there exists a CNE
in G is in 2-EXPTIME.

The remainder of the section is devoted to proving Theorem 4.1. Our solution is
based on a reduction to the problem of solving a restricted form of partial-information
game. We then employ a result from [CD14], and obtain the complexity result by a
careful analysis of the construction. The rest of the section is organized as follows. In
Section 4.1 we present the model of partial-information games and the result of [CD14].
In Section 4.2 we give an overview of the reduction and in Section 4.3 we describe and
analyze the reduction from our setting.

4.1 Partial-Information Games

Partial-information games (also known as games with incomplete information) are a
ubiquitous model for settings where the players cannot fully observe the state of the
game due to e.g., private/hidden variables, unknown parameters or abstractions of part
of the system.

Formally, a partial-information game is a tuple G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩
where Pla, S, s0, Act and δ are the same as in concurrent games. For every player
p ∈ Pla, the set of observations Op ⊆ 2S is a partition of S. We omit the acceptance
condition, and we will include it explicitly in Theorem 4.2 below.

Intuitively, when the play of G is at state s ∈ S, Player p can only observe o ∈ Op

such that s ∈ o, and needs to select an action according to o. Thus, we distinguish
between state histories, S+ and observation histories (of Player p), (Op)+. For s ∈ S we
define obsp(s) = o ∈ Op to be the unique observation of Player p such that s ∈ o. We
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extend obsp to histories: let h = s0s1...sk ∈ S+ be a state history, we define obsp(h) =
obsp(s0)obsp(s1), . . . ,obsp(sk) ∈ (Op)+ to be the corresponding observation history.

Strategies are observation based, that is, a strategy for Player p is a function σp ∶
O+p → Act. Since different players may have different observation sets, we denote by Σp

G
the set of all strategies for Player p. We denote by ΣPla

G the set of all strategy profiles.
Similarly to concurrent games, a strategy profile σ can be thought of as a function

that maps histories to action profiles σ(h) = (σp(obsp(h)))p∈Pla ∈ ActPla, and we define
outG(σ) ∈ Sω similarly to concurrent games.

We say that Player p ∈ Pla has perfect information if Op = {{s} ∣ s ∈ S}. That is,
Player p can observe the exact state of the game. If all players have perfect information
then the game is a perfect information game, and coincides with our definition of
concurrent games. We say that Player i is less informed than Player j if Oj is a
refinement of Oi. That is, for every oj ∈ Oj there exists oi ∈ Oi such that oj ⊆ oi.

Finally, consider an objective α ⊆ Sω, we say that α is visible to Player p if for every
ρ, ρ′ ∈ Sω such that obsp(ρ) = obsp(ρ′) we have that ρ ∈ α if and only if ρ′ ∈ α. That is,
the objective can be defined according to observation sequences rather than plays.

The following theorem is a result from [CD14] that will serve as the target of our
reduction.

Theorem 4.2. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ be a partial information game, with
Pla = {1,2,3} where Player 1 is less informed than Player 2. Let α ⊆ Sω be par-
ity objective over S. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G ∃σ3 ∈

Σ3
G outG(σ1, σ2, σ3) ∈ α is 2-EXPTIME complete.

4.2 Overview of the Reduction

We now turn to describe a reduction from the CNE existence problem to the setting
of Theorem 4.2. We start with a high-level description. Consider an MTG G. Instead
of asking directly whether G admits a CNE, we first fix a set of “intended” winning
topologies Tp ⊆ Top for each player p ∈ Pla. Then, we ask whether G admits a CNE σ in
which WinTopp

G(σ) = Tp for every p ∈ Pla. If we are able to answer the latter problem,
we can iterate over every possible tuple (Tp)p∈Pla (or nondeterministically guess a set)
and conclude whether G admits a CNE. We remark that this approach is reminiscent
of the technique in [BBM15], where the existence of an NE in a game is decided by
first guessing a “witness” path.

Once the set of intended topologies is fixed, we construct a 3-player partial infor-
mation game whose players are Eve,Adam and Snake, with the following roles:

• Eve controls the coalition of all players, and suggests a strategy profile σ by
selecting the actions for all the players at each step.

• Adam selects a deviating player p, and the deviating strategy σ′p for that player. In
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addition, Adam selects a set T ⊆ Top in which Player p tries to win when playing
σ′p.

• Snake helps1 Eve by selecting a concrete topology t from the set T picked by
Adam.

The game starts with Adam and Snake choosing p, T and t ∈ T . It then proceeds with
Eve and Adam choosing σ and σ′p, respectively, while playing on Gt. The observation
sets of the players are such that both Eve and Adam can only observe the current state
of the game, so Eve is ignorant of p, T and t, and Adam is ignorant of t (except knowing
that t ∈ T ).

The objective of Eve and Snake is then composed of three conditions:

1. Snake must choose a topology t ∈ T .

2. If the strategy σ′p proposed by Adam does not in fact deviate from the profile σ

proposed by Eve (dubbed “Adam obeys Eve”), and if t ∈ Tp, i.e., p was intended to
win in t, then the outcome must be winning for Player p.

3. If Adam selected T to contain a topology not in Tp (i.e., Player p potentially tries
to win in a superset of Tp), then the outcome must be losing for Player p.

The overall idea is that if Eve can find a strategy for all the players, from which any
deviation choice of Adam can be shown to be non-beneficial by an appropriate choice
by Snake, then there is a CNE with the intended winning topologies, and vice-versa.

There are, however, some caveats: first, in order to allow Adam to choose any set of
topologies, the size of the game would be exponential, which is undesirable. Second, it
is not immediate that the conjunction of conditions above can be captured by a small
parity objective (since the parity condition does not allow conjunction without a change
of state space [Bok18]). Third, we need to separate the cases where Adam obeys Eve.
In the following we give the complete construction, which overcomes these caveats.

4.3 Reduction to Partial Information Game

Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla, fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction We construct a 3-player partial-information game H with the
following components. The players are Eve, Adam and Snake. The states of H are QH =
{q0}∪Q, where q0 is a designated initial state and Q ⊆ S×Pla×2Top×Top×{true,false}
is described in the following. A state (s, p, T, t, b) ∈ Q comprises s ∈ S which tracks the
state of G, a player p ∈ Pla that is controlled by Adam, a set T ⊆ Top of topologies that

1It is arguable whether this matches the biblical interpretation. This work makes no theological
claims.
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Adam picks, t ∈ Top is a topology picked by Snake and determines the topology G is
played in, and a bit b ∈ {true,false} which tracks whether Adam obeys Eve.

To make ∣Q∣ polynomial in ∣G∣ we restrict the component containing sets of topolo-
gies. Instead of allowing Adam to chose any T ∈ 2Top, that he intends to win with the
selected player p, we observe that it is enough to consider only the sets that add a
single topology to Tp, in case that Adam wants to show a profitable deviation, and all
the sets containing a single topology, in the case that Adam wants to show that Eve fails
to get the desired outcome in this topology. We define Tp = {Tp ∪ {t} ∣ t ∈ Top} ⊆ 2Top

and T = (⋃p∈Pla Tp) ∪ {{t} ∣ t ∈ Top}. Note that ∣T ∣ ≤ (∣Pla∣ + 1) ⋅ ∣Top∣ ≤ 2 ⋅ ∣Pla∣ ⋅ ∣Top∣.
We now define Q = S × Pla × T ×Top × {true,false}.

We now turn to define the transitions in H. The actions are defined implicitly by
the transitions.2 From q0, Adam selects a player p ∈ Pla and a set of topologies T ∈ Tp.
As explained in Section 4.2, Adam controls Player p and attempts to show that p wins
in T . Still in q0, Snake selects a topology t ∈ Top that G will be played in. Then, H
transitions to state (s0, p, T, t,true) ∈ Q.

Henceforth, p, T and t remain fixed throughout the play, and Snake has no further
effect on the play. From state (s, p, T, t, b) ∈ Q, Eve chooses an action profile a ∈ ActPla

and Adam selects an action a′p ∈ Act. Then, the game transitions to state (s′, p, T, t, b′) ∈
Q such that s′ = δt(s,a[p ↦ a′p]), and (b′ = b) ∧ (ap = a′p). That is, Eve chooses an
action profile, Adam chooses a possible deviation, and the game proceeds according to
Gt. If Adam actually deviates, the bit b becomes false and remains so throughout the
play. Adding {{t} ∣ t ∈ T } to T is to make sure that if Player p is supposed to win
in topology t (that is, t ∈ Tp), then, the profile suggested by Eve must lead to player
p winning in topology t. If not, Adam can choose {t} and Player p at the start of the
game, and obey Eve, falsifying one of Eve’s winning conditions.

Next, we define the observation sets of H. For a state q = (s, p, T, t, b) ∈ Q we define
the projection of q on G to be proj(q) = s. For every state s ∈ S of G, let os = {q ∈ Q ∣
proj(q) = s} ⊆ Q. The observation sets in H are OAdam = OEve = O = {{q0}}∪{os ∣ s ∈ S}.
That is, Adam and Eve can observe the initial state q0, and for every q ∈ Q they can
only observe proj(q). Snake has perfect information.

This completes the construction of the game H (recall that H does not have an
objective). We proceed to formalize the connection between G and H.

Correspondence between H and G We lift the definition of projection to plays:
for a play ρ = q0q1q2... ∈ q0 ⋅Qω of H define proj(ρ) = proj(q1)proj(q2)... (note that we
skip the initial state q0). We also define the predicate obey(ρ) = ⋀i≥1 bi, where bi is
the true/false bit of qi. That is, obey(ρ) is true if and only if Adam always takes the
actions suggested by Eve. When obey(ρ) is true, we say that Adam obeys Eve.

2In the model we describe, actions are identical for all players. However, the model of [CD14] allows
different actions as well as enabled and disabled actions in each state, so it is easy to accommodate our
actions.
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Since the observation of Eve and Adam correspond to states of G, there is a corre-
spondence between plays, observation-histories and strategies in H to plays, histories
and strategies in G. We make this precise in the following. Consider the function γobs ∶
{q0} ⋅Oω → Sω defined γobs({q0}, os0 , os1 , . . .) = s0, s1, . . .. Since os = {q ∣ proj(q) = s} for
every s ∈ S, we have that γobs is a bijection between observation-plays of Eve and Adam
in H, and plays of G. By looking at finite sequences, namely histories, we can refer to
γobs as a bijection between observation-histories of Adam and Eve in H, and histories in
G. Moreover, since strategies in H are observation based, the following functions are
also bijective:

• γEve ∶ ΣEve
H → ΣG defined by γEve(σEve) = σEve ○ γ−1

obs.

• γAdam ∶ ΣAdam
H → ⋃p∈Pla{p} × Tp × Σp

G defined γAdam(σAdam) = (p, T, σ′p) such that
σAdam(q0) = (p, T ) are the player and the set of topologies selected by Adam in
state q0, and σ′p = σAdam ○ γ−1

obs is the deviating strategy in G induced by the
deviation proposed in σAdam in H.

• γSnake ∶ ΣSnake
H → Top defined by γSnake(σSnake) = σSnake(q0) (recall that Snake

only acts in q0).

For readability, we omit the subscript and write γ instead of γobs, γAdam, γEve, γSnake. The
correct subscript can be deduced from context. Intuitively, γ is the correspondence from
strategies/histories/plays in H to their counterpart in G.

The connection between strategies and outcomes in H and G is formalized in the
following lemma:

Lemma 4.3.1. Consider strategies σEve ∈ ΣEve
H , σAdam ∈ ΣAdam

H and σSnake ∈ ΣSnake
H . Let

σ = γ(σEve), (p, T, σ′p) = γ(σAdam) and t = γ(σSnake). Let ρ = outH(σEve, σAdam, σSnake),
π′ = outGt(σ[p↦ σ′p]), and π = outGt(σ). Then proj(ρ) = π′. Furthermore, if Adam
obeys Eve on ρ then proj(ρ) = π = π′.

Proof We prove by induction that for every k ≥ 1, proj(ρ≤k+1) = π′≤k, and if Adam obeys
Eve then proj(ρ≤k+1) = π′≤k = π≤k. For k = 1, ρ≤2 = q0, (s0, p, t, T, b0) and π′≤1 = π≤1 = s0

and we have that proj(ρ≤k+1) = π′≤k. Assuming that proj(ρ≤k+1) = π′≤k for k ≥ 1,
the next state of proj(ρ) will depend on the transition function δt and action profile
σ[p↦ σ′p](π′≤k) from the way γ and the transitions of H are defined, and the next state
in π′ will also depend on the same transition function and action profile. Thus, it holds
that proj(ρ≤k+2) = π′≤k+1. Farther more, if Adam obeys Eve then in every step the action
that Adam takes is identical to the action that Eve suggests for Player p, so we have
that σ[p↦ σ′p](π′≤k) = σ(π′≤k), and π≤k+1 = π′≤k+1, thus, proj(ρ≤k+2) = π≤k+1 = π′≤k+1.
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Objective for H As sketched in Section 4.2, the objective α in H is constructed so
that Eve and Snake can win if and only if there is a CNE in G with winning topologies
(Tp)p∈Pla.

We define α as a conjunction of three conditions α = {ρ ∈ q0 ⋅ Qω ∣ ψ1(ρ) ∧
ψ2(ρ) ∧ ψ3(ρ)}, where the conditions are defined as follows. Consider a play ρ =
q0, (s0, p, T, t, b0), (s1, p, T, t, b1), . . . of H.

• ψ1(ρ) ∶= t ∈ T . That is, ψ1 forces Snake to choose a topology from the set of
topologies selected by Adam.

• ψ2(ρ) ∶= (obey(ρ) ∧ t ∈ Tp) → proj(ρ) ∈ αt,p. That is, ψ2 is satisfied if whenever
Adam obeys Eve then Player p wins in the topology t ∈ Tp selected by Snake.

• ψ3(ρ) ∶= Tp ⊊ T → proj(ρ) ∉ αt,p. That is, ψ3 is satisfied if whenever Adam tries
to win in a strict superset of Tp, then Player p loses in the topology selected by
Snake.

As mentioned in Section 4.2, it is not clear that α can be expressed as a single parity
objective over QH. Nonetheless, we prove that this is possible. The key observation
is that the “postconditions” of ψ2 and ψ3 contradict, hence one of them must hold
vacuously. This allows us to decouple the parity conditions for each of them and obtain
a single parity objective that captures both, as follows.

For each objective αt,p in G we write αt,p = Parity(Ωt,p) such that Ωt,p ∶ S →
{0, . . . , d} is the parity ranking function, where d ∈ N. We define a new ranking function
Ω ∶ QH → {0, ..., d + 1}, and show that α = Parity(Ω).

Observe that q0 occurs only once in a play, so its priority has no effect. We arbitrarily
set Ω(q0) = 0. Let ρ ∈ q0 ⋅Qω be a play of H and (s, p, T, t, b), (s′, p′, T ′, t′, b′) ∈ Inf(ρ).
It must be that p = p′, T = T ′ and t = t′ since those are constant throughout the play,
and b = b′ since it is either always true or from some point in ρ it turns into false and
stays that way to the rest of the play.

Let q = (s, p, T, t, b) ∈ Q. We define Ω(q) by cases according to p, T, t, b, and show
that in each case, ρ ∈ α if and only if ρ ∈ Parity(Ω), concluding that α = Parity(Ω). For
a formula of the form ψ = φ1 → φ2, we refer to φ1 as the precondition of ψ, and φ2 as
the postcondition of ψ.

• t ∉ T : In this case, if q ∈ Inf(ρ) then ρ does not satisfy ψ1, thus, ρ ∉ α. We set
Ω(q) = 1 to get ρ ∉ Parity(Ω).

• t ∈ T , b = true, t ∈ Tp and Tp ⊊ T : In this case, if q ∈ Inf(ρ) then ρ satisfies the
preconditions of both ψ2 and ψ3, but the postconditions of ψ2 and ψ3 contradict,
thus, ρ ∉ α. We set Ω(q) = 1 to get ρ ∉ Parity(Ω).

• t ∈ T , b = true ∧ t ∈ Tp and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) ∈ αt,p. So we set Ω(q) = Ωt,p(s), to apply the objective αt,p over proj(ρ).
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• t ∈ T , ¬(b = true ∧ t ∈ Tp) and Tp ⊊ T : In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) ∉ αt,p. So we set Ω(q) = Ωt,p(s) + 1, to apply the complement of the
objective αt,p over proj(ρ).

• t ∈ T , ¬(b = true∧t ∈ Tp) and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ) then ψ2 and ψ3

are vacuously satisfied, and ρ ∈ α. So we set Ω(q) = 0 to get that ρ ∈ Parity(Ω).

We are now ready to characterize the existence of a CNE in G by winning strategies
in H.

Lemma 4.3.2. Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩.
Let (Tp)p∈Pla be sets of topologies for each player and let H be the corresponding partial-
information game. There exists a strategy profile σ in G such that σ is a CNE and for
every p ∈ Pla we have WinTopp

G(σ) = Tp if and only if the follwing holds:

∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H ∃σSnake ∈ ΣSnake
H outH(σEve, σAdam, σSnake) ∈ α.

Proof Assume σ is a CNE in G such that for every p ∈ Pla, WinTopp
G(σ) = Tp, and

fix σEve = γ−1(σ) to be the corresponding strategy for Eve in H. Consider a strategy
σAdam ∈ ΣAdam

H for Adam, and let (p, T, σ′p) = γ(σAdam). We show that there exists a
strategy σSnake ∈ ΣSnake

H so that the outcome satisfies α. Recall that a strategy for
Snake amounts to choosing a topology. We divide to cases according to the choice of
T by Adam.

• If ¬(Tp ⊊ T ), then ψ3 is satisfied vacuously. Choose t ∈ T for Snake, then ψ1

is satisfied. If Adam does not obey Eve or t ∉ Tp then ψ2 is vacuously satisfied.
Otherwise, if Adam obeys Eve and t ∈ Tp, let ρ = outH(σEve, σAdam, σSnake). In order
to show that ψ2 is satisfied we need to show that proj(ρ) ∈ αt,p. Let π = outGt(σ).
Since Tp =WinTopp

G(σ) and t ∈ Tp we have that π ∈ αt,p. From Lemma 4.3.1 we
have that proj(ρ) = π, so we get that proj(ρ) ∈ αt,p, as required.

• If Tp ⊊ T , denote T ′ = WinTopp
G(σ[p↦ σ′p]). Since σ is a CNE, we have that

¬(Tp ⊊ T ′), so T ∖ T ′ ≠ ∅, as otherwise we would have that Tp ⊊ T ⊆ T ′. Choose
t ∈ T ∖ T ′ for Snake, then ψ1 is satisfied. Let ρ = outH(σEve, σAdam, σSnake), π′ =
outGt(σ[p↦ σ′p]) and π = outGt(σ). From Lemma 4.3.1 we have that proj(ρ) = π′

and if Adam obeys Eve then we have proj(ρ) = π = π′. Note that since t ∉ T ′ =
WinTopp

G(σ[p↦ σ′p]) then π′ ∉ αt,p, so ψ3 is satisfied. Finally, ψ2 is satisfied
vacuously since we cannot have t ∈ Tp and that Adam obeys Eve simultaneously,
as this would yield T ′ = Tp =WinTopp

G(σ), but t ∉ T ′.

We conclude that in all cases ρ ∈ α, as required.
Conversely, assume that σEve ∈ ΣEve

H is such that for every σAdam ∈ ΣAdam
H there exists

σSnake ∈ ΣSnake
H such that outH(σEve, σAdam, σSnake) ∈ α. Let σ = γ(σEve). We start by

showing that for every p ∈ Pla it holds that WinTopp
G(σ) = Tp. Indeed, let p ∈ Pla and

t ∈ Top.
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If t ∈ Tp, take σAdam ∈ ΣAdam
H that selects player p and T = {t}, and obeys Eve. The only

strategy σSnake for Snake that satisfies ψ1 is to select t. Let ρ = outH(σEve, σAdam, σSnake).
From ψ2 we get that proj(ρ) ∈ αt,p, and by Lemma 4.3.1 we have proj(ρ) = outGt(σ).
Thus, t ∈WinTopp

G(σ).
If t ∉ Tp, take σAdam ∈ ΣAdam

H that selects Player p and T = Tp ∪ {t}, and obeys Eve.
Since Adam obeys Eve, in order for ψ1, ψ2 and ψ3 to be satisfied, Snake must choose
t, otherwise both preconditions of ψ2 and ψ3 hold, which means that in order to win
we must have both proj(ρ) ∈ αt,p (by ψ2) and proj(ρ) ∉ αt,p (by ψ3), which cannot
hold. Thus, Snake chooses t, and from Lemma 4.3.1 we have proj(ρ) = outGt(σ).
By ψ3 we have proj(ρ) ∉ αt,p, so outGt(σ) ∉ αt,p. Thus t ∉ WinTopp

G(σ). Therefore,
WinTopp

G(σ) = Tp.
It remains to show that σ is a CNE. Assume by way of contradiction that there exists

a player p ∈ Pla with a beneficial deviation σ′p ∈ Σp
G . That is, T ′ =WinTopp

G(σ[p↦ σ′p])
satisfies Tp ⊊ T ′. We will construct a strategy of Adam such that every strategy of
Snake is losing, thereby reaching a contradiction. Let T = Tp ∪ {t′} for some t′ ∈ T ∖ Tp

and fix σAdam = γ−1(p, T, σ′p). Consider a strategy σSnake, denote t = γ(σSnake) and let
ρ = outH(σEve, σAdam, σSnake). By Lemma 4.3.1 we have proj(ρ) = outGt(σ[p↦ σ′p]), and
because t ∈ T ⊆WinTopp

G(σ[p↦ σ′p]) it holds that proj(ρ) ∈ αt,p. However, Tp ⊊ T , so
ψ3 is violated, and ρ ∉ α, which is a contradiction. We conclude that σ is a CNE. ∎

Using Lemma 4.3.2 we can decide whether a given MTG G has a CNE, by iterating
over all possible sets of candidate winning topologies (Tp)p∈Pla, and repeatedly applying
the reduction, and using the decision procedure of Theorem 4.2. It remains to analyze
the complexity of this procedure.

To this end, observe that the size of H is polynomial in the size of G. Indeed,
∣Q∣ ≤ ∣S∣ ⋅ ∣Pla∣ ⋅ ∣T ∣ ⋅ ∣Top∣ ⋅ 2 where ∣T ∣ ≤ 2∣Pla∣∣Top∣. The description of the actions is also
polynomial in that of G (note that Eve has exponentially more actions than each player
in G, but the overall description of the transition table in G is similarly exponential, cf.
Remark 1). From Theorem 4.2, solving H takes double-exponential time in ∣G∣. In the
worst case, we will iterate over all 2∣Top∣⋅∣Pla∣ options for (Tp)p∈Pla, which is exponential
in ∣G∣. Repeating the double-exponential procedure an exponential number of times
results in a double-exponential algorithm. This completes the proof of Theorem 4.1.

Remark. Lower bounds and improving the upper bound. We do not have a lower bound
for the 2-EXPTIME complexity of Theorem 4.1. Indeed, we suspect that this bound can
be lowered. This is due in part to the fact that game H we construct does not utilize the
full scope of Theorem 4.2 from [CD14]. Unfortunately, the decision procedure in [CD14]
goes through three nontrivial reductions, one of which involves Safra’s determinization,
that is notoriously difficult to analyze: The first reduction [CD10; CD14] transforms the
objective to a visible objective for Adam which involves the determinization of a parity
automaton. The second reduction [CD14] reduces the three-player partial-information
game into a two-player partial-information game. The third reduction uses the results
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of [RHDC07] to reduce the two-player partial-information game to a two-player perfect-
information game.

Therefore, it is likely that improving the bound (if possible) will involve devising
an ad-hoc procedure, possibly using some key ideas from [CD10; CD14; RHDC07].
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Chapter 5

Existence of Greedy NE is
Decidable

We now turn our attention to Greedy NE (GNE). Recall that a greedy beneficial de-
viation is one that wins in a previously-losing topology, even at the cost of losing in
previously-winning topologies.
That is, given an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩, a profile
σ ∈ ΣPla

G is a GNE if for every p ∈ Pla, σ′p ∈ ΣG and t ∈ Top, if p ∈ WinGt(σ[p↦ σ′p])
then p ∈WinGt(σ).

Intuitively, reasoning in the greedy approach is much less delicate than the conserva-
tive approach, since a deviating player need not concern itself with keeping the current
winning topologies. As we show in the following, this allows for an exponentially faster
solution.

Theorem 5.1. The problem of deciding, given an MTG G, whether there exists a GNE
in G is in EXPTIME.

Similarly to Chapter 4, our approach is to reduce the problem at hand to solving a
partial-information game. In the greedy setting, however, it suffices to use two-player
games. Specifically, we employ the following result from [CD10].

Theorem 5.2. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ with Pla = {1,2}. Let α ⊆ Sω be a
parity objective. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G outG(σ1, σ2) ∈ α

is EXPTIME-complete.

5.1 Reduction to Partial Information Game

Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction We construct a two-player partial-information gameH with the
following components. The players are Eve and Adam. The states ofH are QH = {q0}∪Q
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such that q0 is a designated initial state and Q = S×Pla×Top×{true,false} is described
in the following. A state (s, p, t, b) ∈ Q comprises of s ∈ S which tracks the state of G, a
player p ∈ Pla that is controlled by Adam, a topology t ∈ Top that Adam picks, and a bit
b ∈ {true,false} which tracks whether Adam obeys Eve.

We now turn to define the transitions ofH. The actions are defined implicitly by the
transitions. From state q0, Adam selects a player p ∈ Pla to control and a topology t ∈ Top
that G will be played in. Then, H transitions to state (s0, p, t,true) ∈ Q. Henceforth,
p and t remain fixed throughout the play. From state (s, p, t, b) ∈ Q, Eve chooses an
action profile a ∈ ActPla, and Adam selects an action a′p ∈ Act and H transitions to state
(s′, p, t, b′) ∈ Q such that s′ = δt(s,a[p↦ a′p]), and b′ = b ∧ (a′p = ap).

The observation sets for the players, proj and obey are defined similar to Section 4.3.
Correspondence betweenH and G, γobs, γEve is defined in the same way as in Section 4.3,
and γAdam ∶ ΣAdam

H → ⋃p∈Pla{p} × Top × Σp
H is defined for γ(σAdam) = (p, t, σ′p) such that

(p, t) are the player and topology selected by σAdam in state q0 and σ′p = σAdam ○ γ−1
obs.

The connection between strategies and outcomes in H and G is formalized in the
following lemma whose proof is similar to that of Lemma 4.3.1.

Lemma 5.1.1. Consider strategies σEve ∈ ΣEve
H and σAdam ∈ ΣAdam

H . Let σ = γ(σEve) and
(p, t, σ′p) = γ(σAdam). Let ρ = outH(σEve, σAdam) π′ = outGt(σ[p↦ σ′p]) and π = outGt(σ).
Then, proj(ρ) = π′. Furthermore, if Adam obeys Eve on ρ then proj(ρ) = π = π′.

Objective for H Let ρ = q0 ⋅(s0, p, t, b0) ⋅(s1, p, t, b1) ⋅ ... be a play in H. The objective
α is such that ρ ∈ α ⇐⇒ ψ1(ρ) ∧ ψ2(ρ), where

• ψ1(ρ) ∶= (obey(ρ) ∧ t ∈ Tp)→ proj(ρ) ∈ αt,p.

• ψ2(ρ) ∶= t ∉ Tp → proj(ρ) ∉ αt,p.

α can be expressed as a parity objective as follows. For every t ∈ Top, p ∈ Pla, let Ωt,p ∶
S→ {0, ..., dt,p} be the priority function for the parity objective αt,p in G. We construct
a priority function Ω ∶ QH → {0, ..., d} such that d = max{dt,p + 1 ∣ t ∈ Top, p ∈ Pla}. We
set Ω(q0) = 0 and for state q = (s, p, t, b) ∈ Q we have

Ω(q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ωt,p(s) + 1 t ∉ Tp

Ωt,p(s) b ∧ t ∈ Tp

Ω(q) = 0 ¬b ∧ t ∈ Tp

If t ∉ Tp, then, according to α, ρ ∈ α if and only if proj(ρ) ∉ αt,p. This is achieved by
adding 1 to Ωt,p which gives us the complement of αt,p. The case where Adam obeys
Eve and t ∈ Tp is captured in the second case, where ρ ∈ α if and only if proj(ρ) ∈ αt,p.
This is achieved by setting Ω to be the same as Ωt,p. In the last case, none of the
preconditions of ψ1 and ψ2 hold, so ρ ∈ α. This is achieved by setting Ω to 0, such that
every such play will satisfy the objective.
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Lemma 5.1.2. There exists a GNE σ ∈ ΣG in G with WinTopp
G(σ) = Tp for every

p ∈ Pla, if and only if ∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H outH(σEve, σAdam) ∈ α.

Proof Let σ ∈ ΣG be a GNE with WinTopp
G(σ) = Tp for every p ∈ Pla. Let σEve ∈ ΣEve

H
be the corresponding strategy for σ, and let σAdam ∈ ΣAdam

H be some strategy for Adam
that corresponds to (p, t, σ′p). Let ρ = outH(σEve, σAdam). If obey(ρ) ∧ t ∈ Tp, then from
Lemma 5.1.1 we have that proj(ρ) = outGt(σ), and since t ∈ Tp = WinTopp

G(σ) then
outGt(σ) ∈ αt,p. Thus, ψ1 is satisfied by ρ. If t ∉ Tp then from Lemma 5.1.1 we have
that proj(ρ) = outGt(σ[p↦ σ′p]) and since Player p is losing in t when G is played with
σ and σ is a GNE, then outGt(σ[p↦ σ′p]) ∉ αt,p. Thus, ψ2 is satisfied and ρ ∈ α.

Conversely, let σEve ∈ ΣEve
H be such that for any σAdam ∈ ΣAdam

H , outH(σEve, σAdam) ∈ α.
Let σ ∈ ΣG correspond to σEve. We show that σ is a GNE. First, we show that for every
p ∈ Pla, WinTopp

G(σ) = Tp. Let t ∈ Top and p ∈ Pla. Take σAdam ∈ ΣAdam
H that corresponds

to (p, t, σp) where σp is the strategy assigned to p in σ. Let ρt = outGt(σ) and ρ =
outH(σEve, σAdam). We have that ρ ∈ α. Since Adam obeys Eve on ρ, from Lemma 5.1.1
we have that proj(ρ) = ρt. If t ∈ Tp then from ψ1 we get that ρt = proj(ρ) ∈ αt,p,
thus, t ∈ WinTopp

G(σ). If t ∉ Tp then from ψ2 we get that ρt = proj(ρ) ∉ αt,p, thus,
t ∉WinTopp

G(σ). So we get that WinTopp
G(σ) = Tp. Now, we show that σ is a GNE.

Let p ∈ Pla, σ′p ∈ Σp
G and t ∈ Top such that t ∉ Tp. Let σAdam ∈ ΣAdam

H correspond to
(p, t, σ′p), and let ρ = outH(σEve, σAdam). We have that ρ ∈ α, thus, since t ∉ Tp then
proj(ρ) ∉ αt,p. From Lemma 5.1.1 we have that ρ′t = outGt(σ[p↦ σ′p]) = proj(ρ) ∉ αt,p,
thus, t ∉WinTopp

Gt
(σ[p↦ σ′p]) = Tp, so σ is a GNE. ∎

The algorithm for solving the GNE existence problem is the following. For every
(Tp)p∈Pla ∈ (2Top)Pla we construct H from G and (Tp)p∈Pla. Then, we check if there
exists if there exists a winning strategy for Eve in H. If there is such a strategy, then,
according to Lemma 5.1.2, its corresponding strategy in G is a GNE and the algorithm
returns that there exists a GNE in G. If we went through all the sets (Tp)p∈Pla ∈ (2Top)Pla

without finding a GNE, then the algorithm returns that there is no GNE in G.
The size ofH is polynomial in the size of G. We copy each s ∈ S for every combination

of p ∈ Pla, t ∈ Top, b ∈ {true,false}, so we get ∣QH∣ = 2 ⋅ ∣S∣ ⋅ ∣Pla∣ ⋅ ∣Top∣ + 1, which is
polynomial in the size of G. The number of actions in H is also polynomial in the
number of enabled actions in G (similarly to the analysis in Section 4.3).

The algorithm performs at most 2∣Top∣⋅∣Pla∣ iterations, which is exponential in ∣G∣. In
each iteration we solveH with size that is polynomial in ∣G∣, so according to Theorem 5.2
this takes exponential time in ∣G∣, so the GNE existence problem is in EXPTIME.

We now present a sketch of the proof for the correctness of the algorithm above.
Then, we can conclude Theorem 5.1.

Proof sketch As in Section 4.3, we first fix a set of “intended” winning topologies Tp ⊆
Top for each player p ∈ Pla. Then, we ask whether G admits a GNE σ in which
WinTopp

G(σ) = Tp for every p ∈ Pla. We then construct a 2-player partial-information
game whose players are Adam and Eve, where Eve controls the coalition of all players.
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The behaviour of Adam is different than in the conservative setting. Here, Adam
starts by choosing a deviating player p ∈ Pla and a single topology t ∈ Top where p

attempts to win. The topology t is unobservable by Eve. The observations sets of Eve
and Adam are again only the current state of G. Then, the game is played on topology
t with Eve suggesting an action profile, and Adam possibly deviating with Player p.

The objective for Eve now comprises two conditions:

• ψ1 requires that whenever Adam obeys Eve and t ∈ Tp, the outcome is winning for
Player p in Gt.

• ψ2 requires that if t ∉ Tp, then Player p loses in Gt.

Intuitively, Adam tries to cause Player p to win in a new topology t in which Player
p is not intended to win, while Eve is trying to prevent Player p from achieving this,
provided that Player p is actually deviating. Note that Eve must do this without
knowing which topology is chosen, nor which player deviates (if at all). ∎
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Chapter 6

Strategy Logic with Imperfect
Information

In this section we discuss solving the GNE and CNE existence problems using strategy
logic with imperfect information, SLii, introduced in [BMM+21]. SLii is an expressive
logic that is generally undecidable, but a decidable fragment, called hierarchical in-
stances, can capture the GNE and CNE existence problems. The complexity of SLii

model-checking for hierarchical instances depends on a parameter called the simulation
depth. SLii model-checking for formulas with simulation depth up to k is (k + 1)-
EXPTIME-complete, and the procedure suggested in [BMM+21] is (k+1)-EXPTIME.
Our formulation of the GNE and CNE existence problems with SLii, has a simulation
depth of 2 for both problems, resulting in 3-EXPTIME procedure for solving those
problems. This is a worse complexity result than the EXPTIME and 2-EXPTIME
results that we got in Chapter 5 and Chapter 4, respectively. It might be possible that
there is an alternative formulation with a lower simulation depth, resulting in a lower
complexity for this approach.

The section is organized as follows. In Section 6.1 we give a short overview of
SLii. In Section 6.2 we discuss how to convert a multi-topology game to a model called
concurrent game structure with imperfect information that SLii is interpreted over.
Then, in Section 6.3 we formalize the GNE existence problem with SLii and compute
it’s simulation depth. In Section 6.4 we do the same for the CNE existence problem.

6.1 Overview of SLii

SLii formulas are defined over a number of fixed parameters – a set of atomic propositions
AP, a set of players (or agents) Ag, a set of strategy variables Var and a set of observation
symbols Obs. SLii formulas are interpreted over a Concurrent Game Structure with
Imperfect Information, abbreviated CGSii. A CGSii is a tuple G = ⟨Ac,V,E,L, v0,O⟩
such that Ac is a set of actions, V is a set of states, E ∶ V × AcAg → V is a transition
function, L ∶ V → 2AP is a labelling function, v0 ∈ V is an initial state and O ∶ Obs → 2V×V
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is an observation interpretation, which maps each observation symbol o ∈ Obs to an
equivalence relation over the states O(o) ⊆ V ×V. SLii has the following syntax:

φ ∶= p ∣ ¬φ ∣ φ ∨ φ ∣ ⟪x⟫oφ ∣ (a, x)φ ∣ (a, ?)φ ∣ Eψ; p ∈ AP, x ∈ Var, a ∈ Ag

ψ ∶= φ ∣ ¬ψ ∣ ψ ∨ ψ ∣ Xψ ∣ ψUψ;

Formulas of type φ are called state formulas and formulas of type ψ are called path
formulas. The boolean and temporal operators ¬,∨,X,U have their usual semantics.
The syntax is extended with the boolean and temporal operators ∧,→,F,G that can be
expressed with the operators already in the syntax. The existential strategy quantifier
⟪x⟫oφ means, “there exists a strategy x over the observations O(o) that satisfies φ”.
The syntax is extended with a universal strategy quantifier defined ⟦x⟧oφ ∶= ¬⟪x⟫o¬φ.
The binding operator (a, x) binds strategy x to player a and the unbinding operator
(a, ?) unbinds player a from it’s current strategy. The existential outcome quantifier
Eψ means “there exists an outcome of the current strategy assignment that satisfies
ψ”. The syntax is extended with a universal outcome quantifier defined Aψ ∶= ¬E¬ψ.
For a full description of the semantics of SLii we refer readers to [BMM+21].

An SLii instance is a pair (G,Φ) where G is a CGSii and Φ is an SLii state formula. In
general, SLii is undecidable. But, a fragment called hierarchical instances is decidable.
An hierarchical instance is such that as we go down the syntax tree of the formula,
observations only get finer.

The complexity of the model-checking problem for an hierarchical SLii instance
(G,Φ) depends on the simulation depth of (G,Φ). The simulation depth is computed
recursively on the formula’s structure. The complexity of the model-checking procedure
for an instance with simulation depth k is (k + 1)-EXPTIME. For a description of how
to compute the simulation depth we refer readers to [BMM+21].

6.2 MTG to CGSii

In this section we show how to translate an MTG to a CGSii and a set of formulas that
describe the players winning conditions.

Let G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩ be an MTG. We denote the
players Pla = {p1 . . . pn}. First, we fix the parameters over which the SLii formulas are
defined, AP, Ag, Var and Obs. The set of atomic propositions is such that we can
encode each state and each topology with a unique label (a subset of AP). This will
enable us to write the LTL formula ψt,p for every t ∈ Top and p ∈ Pla which means that
the topology t is played and p’s objective is satisfied. The set of agents is Ag = Pla∪{T}
where T is the topology player that selects the topology. The set of strategy variables
is Var = {σp ∣ p ∈ Pla} ∪ {σ′p ∣ p ∈ Pla}. Since all players have the same observation sets
(i.e., can observe the state, but not the topology), we only need a single observation
symbol o. Note that every SLii instance with a single observation symbol is inherently
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hierarchical.
The CGSii that we use is H = ⟨Ac,V,E,L, v0,O⟩. The actions in H are the actions

in G together with actions for T that enable him to select the topology in the first turn
of the game. The states of H are V = (S × Top) ∪ {v0}, where v0 is the initial state
where T selects the topology. The transition function corresponds to the transition
function of G, and allowing T to select the topology from the initial state v0. The
observation symbol o is interpreted such that v0 is distinguishable from all other states
and ((s, t), (s′, t′)) ∈ O(o) (that is, (s, t) and (s′, t′) are indistinguishable) if and only
if s = s′.

6.3 Expressing GNE Existence Problem with SLii

The following formula expresses the GNE existence problem in SLii:

⟪σ⟫o(Pla,σ) ⋀
p∈Pla

⎡⎢⎢⎢⎢⎣
⟦σ′p⟧o

⎛
⎝ ⋀t∈Top

(Eψt,p ∨ ¬(p, σ′p)Eψt,p)
⎞
⎠

⎤⎥⎥⎥⎥⎦

Where ⟪σ⟫o ∶= ⟪σp1⟫o . . .⟪σpn⟫o is a shorthand way of writing “there exists a strategy
profile”. Similarly, (Pla,σ) ∶= (p1, σp1) . . . (pn, σpn) is binding the strategy profile to the
players. When all players except for the topology player T are bound to a strategy,
the formula Eψp,t means that player p wins in topology t under the given strategy
assignment. After we quantify over strategy profiles, we require that for every player
p in G, every strategy σ′p and every topology t, either player p wins topology t when
players are assigned strategy profile σ or player p loses topology t when she changes
her strategy to σ′p.

Simulation depth Now, we compute the simulation depth of the instance. The
computation involves two parameters – first is the current simulation depth k ∈ N
and the second is a parameter that can be either nd or alt. The computation is
performed according to Section 5.2 in [BMM+21]. Quantifying an LTL formula with
E gives the simulation depth (0,nd). Thus, sd (Eψt,p) = (0,nd). Binding a strategy to
a player does not change the simulation depth, so we have sd ((p, σ′p)Eψt,p) = (0,nd).
Negating a formula keeps the current simulation depth the same and sets the second
parameter to alt. Thus, sd (¬(p, σ′p)Eψt,p) = (0,alt). Taking a disjunction between
two formulas results in the maximum of each parameter of the subformulas (where
nd < alt), thus, sd (Eψt,p ∨ ¬(p, σ′p)Eψt,p) = (0,alt). The conjunction over all the
topologies translates into a negation, disjunction and another negation. Since each
subformula φ has sd (φ) = (0,alt), we have that:

sd
⎛
⎝ ⋀t∈Top

(Eψt,p ∨ ¬(p, σ′p)Eψt,p)
⎞
⎠
= (0,alt)
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The universal strategy quantifier translates into a negation that does not change the
simulation depth, an existential strategy quantifier that increases the first parameter
by 1 and sets the second parameter to nd and another negation that sets the second
parameter to alt. So we have that

sd
⎛
⎝
⟦σ′p⟧o

⎛
⎝ ⋀t∈Top

(Eψt,p ∨ ¬(p, σ′p)Eψt,p)
⎞
⎠
⎞
⎠
= (1,alt)

Binding the strategy profile to the players has no effect and the universal strategy
quantifier increases the first parameter by 1 and sets the second to nd, thus,

sd
⎛
⎝
⟪σ⟫o(Pla,σ) ⋀

p∈Pla

⎡⎢⎢⎢⎢⎣
⟦σ′p⟧o

⎛
⎝ ⋀t∈Top

(Eψt,p ∨ ¬(p, σ′p)Eψt,p)
⎞
⎠

⎤⎥⎥⎥⎥⎦

⎞
⎠
= (2,nd)

Making model-checking complexity of the instance to be 3-EXPTIME.

6.4 Expressing CNE Existence Problem with SLii

The following formula expresses the CNE existence problem in SLii:

⟪σ⟫o(Pla,σ) ⋀
p∈Pla

ξp

ξp ∶= ⟦σ′p⟧o
⎛
⎝
⎛
⎝ ⋀t∈Top

(Eψt,p ∨ ¬(p, σ′p)Eψt,p)
⎞
⎠
∨
⎛
⎝ ⋁t∈Top

(Eψt,p ∧ ¬(p, σ′p)Eψt,p)
⎞
⎠
⎞
⎠

The formula for CNE is similar to the formula for GNE. We change the subformula
⋀t∈Top (Eψt,p ∨ ¬(p, σ′p)Eψt,p), which means that for every topology t, player p does
not improve her outcome by switching to strategy σ′p, by taking a disjunction with
⋁t∈Top (Eψt,p ∧ ¬(p, σ′p)Eψt,p), which means that there exists a topology where player p
wins, and loses if she changes her strategy to σ′p.

Simulation depth The simulation depth of the formula⋀t∈Top (Eψt,p ∨ ¬(p, σ′p)Eψt,p)
and the formula ⋁t∈Top (Eψt,p ∧ ¬(p, σ′p)Eψt,p) is the same and is equal to (0,alt).
Thus, the conjunction of the two results in a formula with simulation depth (0,alt).
The next steps in the computation of the simulation depth are identical to the com-
putations for GNE, making the simulation depth be (2,nd) and the model-checking
complexity to be in 3-EXPTIME.
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Chapter 7

Discussion, Extensions and
Future Work

We introduced MTGs and notions of NE pertaining to them, and showed that deciding
whether an MTG admits either notion is decidable (in 2-EXPTIME for CNE and in
EXPTIME for GNE). We have explored the relationships and properties of these no-
tions of NE. In the solution for the CNE existence problem we showed a novel technique
of reducing the problem to a three player partial information game. This shows that
MTGs can be seen as a restricted form of partial information games that might be
more useful for modelling systems with this restricted form of partial information. We
now turn to explore several extensions, and remark about future research directions.

Social optimum A standard solution concept for concurrent games, apart from NE,
is social optimum, namely what is the maximum welfare the players can obtain by
cooperating. Since in MTGs the winning sets of topologies may be incomparable, we
formulate this as follows: given sets (Tp)p∈Pla, is there a strategy profile σ such that
WinTopp

G(σ) = Tp for every p ∈ Pla?
Fortunately, the techniques we developed enable us to readily solve this problem.

Indeed, we can modify the reduction used to decide the existence of GNE (Chapter 5)
so that Adam chooses a player and a topology, but does not attempt to deviate and
has no further effect on the game. Intuitively, Adam “challenges” Eve to show that the
winning topologies for the players are exactly the intended ones. The complexity of
this approach remains EXPTIME.

Lower bounds As discussed in Remark 5, we do not provide lower bounds for our
results. Trivial lower bounds on the existence of CNE and GNE can be obtained from
those of NE existence in concurrent games, namely PNP

∣∣ -hardness [BBM15]. This,
however, is unlikely to be tight. A central open challenge is to determine the exact
complexity of CNE and GNE existence in MTGs.
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Additional notions of equilibria The notions we propose, namely CNE and GNE,
lie on two extremities: in the conservative setting a deviation is very strict, and in the
greedy setting it is very lax. Generally, one can obtain a notion of equilibrium using
any binary relation on 2Top, which describes what the beneficial deviations are for each
player. Moreover, different players can have different relations.

Of particular interest is a quantitative notion of NE, whereby a player deviates if
she can increase the number of her winning topologies. This notion is fundamentally
different from CNE and GNE, as it is not based on set containment, which is key to
the correctness of our approach.

Succinct representation of topologies A central motivation for MTGs, demon-
strated in Example 1.0.1 and in Section 3.1 concerns process symmetry. There, from
a game with k players, we construct an MTG with k! topologies. However, these
topologies can be succinctly represented by computing them on-the-fly. An interesting
direction for future work is to determine whether we can devise a symbolic approach
that is able to handle such MTGs without incurring an exponential blowup.

Logic for partial information games In Chapter 6 we showed that logic for partial
information games [BMM+21; FS10; Mau14] can be used for solving the GNE and CNE
existence problems. It turns out, while this approach can be described with a more
straightforward formula than our solution, the complexity upper bounds it gives are
3-EXPTIME for both problems. Moreover, writing the formula essentially requires an
understanding of the approach we take in the paper. It remains an open question if it
is possible to improve this upper bound using a more elaborate analysis. This approach
might be more easily extended to other notions of NE, utilizing the expressivity of the
logic.

Combinatorial topology Combinatorial topology is a useful tool for reasoning
about game theoretic concepts and distributed computing [RR22]. A possible future
research direction would be to investigate MTGs through the lens of combinatorial
topology and to see if it offers interesting insights about the model.
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מספיק שלה, מהאסטרטגיה תסטה ששחקנית בכדי שבו חמדן, נאש ושיווי-משקל מנצחת, היא בה

של שונות תכונות בוחנים אנו סטיה. ידי על מצבה את לשפר יכולה היא בה אחת טופולוגיה שקיימת

שמרן. שיווי-משקל של פרטי מקרה הוא חמדן ששיווי-משקל למשל נאש, לשיווי-משקל הללו ההגדרות

אלו אלגוריתמים מרובי-טופולוגיות. במשחקים אלו שיווי-משקל למציאת אלגוריתמים מתארים אנו

- רגילים מקביליים במשחקים שיווי-משקל למציאת האלגוריתם בבסיס העומד הרעיון על מבוססים

הוא חמדן שיווי-משקל למציאת האלגוריתם אחר. במשחק מנצחת אסטרטגיה למציאת הבעיה הפיכת

לשחקנית מנצחת אסטרטגיה למציאת הבעיה של רדוקציה על ומסתמך מעריכית, זמן סיבוכיות בעל

סיבוכיות בעל הוא שמרן שיווי-משקל למציאת האלגוריתם שחקנים. שני עם ידיעה-חלקית במשחק

במשחק לשחקנית מנצחת אסטרטגיה למציאת הבעיה של רדוקציה על ומסתמך מעריכית-כפולה, זמן

לטובתה. פועל הנוסף והשחקן כנגדה, פועל השחקנים אחד כאשר שחקנים, שלושה עם ידיעה-חלקית

במקרה כריעה לא בעיה היא שחקנים שלושה עם ידיעה-חלקית במשחק מנצחת אסטרטגיה מציאת

זו. בעיה לפתרון אלגוריתם קיים מקיימת, שלנו שהבנייה מסוימות הנחות תחת אך הכללי,

ii



תקציר

המתקשרים רכיבים ממספר המורכבות מערכות למידול משמשים מרובי-שחקנים מקביליים משחקים

לדוגמא, אוטונומית. בצורה החלטות לקבל ויכולת משלו, מטרה רכיב לכל כאשר השני, עם אחד

מנהל הם השונים הרכיבים זה. מסוג משחק באמצעות חישוב שירותי המספק ענן שירות למדל ניתן

שונים ולקוחות לקוחות, שיותר לכמה תקין שירות ולאפשר רווח למקסם היא שלו שהמטרה המערכת,

שיווי- ביותר. הקצר בזמן שלהם החישובים את לבצע היא שלהם שהמטרה בשירות, המשתמשים

אסטרטגיות פרופיל הוא נאש שיווי-משקל זה. מסוג למשחקים הסטנדרטי הפתרון הוא נאש משקל

כל כלומר, שלו, מהאסטרטגיה לסטות מוטיבציה אין שחקן לאף שבו "יציב" שחקן) לכל (אסטרטגיה

בעבודה טובה. פחות או המידה, באותה טובה לתוצאה תוביל לו, שנתנה מהאסטרטגיה שלו סטייה

מפרט מייצגת שחקן כל של המטרה בהם אומגה-רגולרים, ניצחון תנאי בעלי במשחקים נעסוק זו

אומגה- ניצחון תנאי עם מרובי-שחקנים מקביליים במשחקים נאש שיווי-משקל לקיים. השחקן שעל

משחק בהינתן שהבעיה, ונמצא המשחק, מצב על מלא מידע לשחקנים בהם במקרים נחקר רגולרים

אלגוריתם קיים מסוימים, ובתנאים להכרעה, ניתנת במשחק, נאש שיווי-משקל קיים האם מקבילי,

שיווי-המשקל. למציאת (פולינומיאלי) יעיל

מכיל המערכת מצב אם לדוגמה, המערכת, מצב את מלאה בצורה רואים לא רכיבים רבים, במקרים

ידי על ממודלת הרכיבים בין האינטראקציה זה, במקרה חוץ. כלפי חשופים שאינם פנימיים משתנים

ידיעה-חלקית במשחק נאש שיווי-משקל קיים האם לקבוע הצער, למרבה ידיעה-חלקית. עם משחקים

שהמערכת מכך נובעת הרכיבים של אי-הידיעה רבים, במקרים זאת, עם כריעה. לא בעיה היא כללי

את לראות יכול הרכיב זה, במקרה התהליכים, בפני חשוף שאינו ייחודי, מזהה תהליך לכל משייכת

שלו. הפעולות של ההשפעה תהיה מה בדיוק יודע אינו אך מלא, באופן המערכת מצב

משחקים - טופולוגיות" מרובי "משחקים הנקרא חדש מודל באמצעות זה רעיון מכלילים אנו זו, בעבודה

בדיוק לדעת מבלי המשחק את משחקים שהשחקנים כך אפשריות טופולוגיות מספר עם מקבילים

אחת אסטרטגיה לבחור השחקנים על מרובה-טופולוגיות במשחק נמצא. המשחק טופולוגיה באיזו

תוצאה משרה השחקנים עבור אסטרטגיות פרופיל כל בכך, וכיוצא הטופולוגיות, לכל אותם שתשמש

עובדה רגיל. מרובה-שחקנים מקבילי במשחק יחידה לתוצאה בניגוד טופולוגיה, לכל המשחק של שונה

מרובי-טופולוגיות, משחקים עבור מוגדר נאש שיווי-משקל שבו באופן התאמות לבצע מאיתנו דורשת זו

מציאת עבור מקביליים במשחקים נאש שיווי-משקל למציאת באלגוריתם להשתמש מאיתנו ומונעת

טופולוגיות. מרובי במשחקים נאש שיווי-משקל

שתי ובוחנים שונים, אופנים בכמה אלו משחקים עבור נאש שיווי-משקל להגדיר שניתן מראים אנו

תוביל שהסטיה בתנאי רק שלה מהאסטרטגיה תסטה שחקנית בו שמרן, נאש שיווי-משקל אפשרויות:

טופולוגיה באף להפסיד מבלי הנוכחית, האסטרטגיה עם מפסידה היא בהן בטופולוגיות לניצחון
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