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Abstract

Concurrent multi-player games with w-regular objectives are a standard model for sys-
tems that consist of several interacting components, each with its own objective. The
standard solution concept for such games is Nash Equilibrium, which is a “stable”
strategy profile for the players.

In many settings, the system is not fully observable by the interacting components,
e.g., due to internal variables. Then, the interaction is modelled by a partial information
game. Unfortunately, the problem of whether a partial information game has an NE
is, in general, undecidable. A particular setting of partial information arises naturally
when processes are assigned IDs by the system, but these IDs are not known to the
processes. Then, the processes have full information about the state of the system, but
are uncertain of the effect of their actions on the transitions.

We generalize the above setting and introduce Multi-Topology Games (MTGs) —
concurrent games with several possible transition functions, each transition function
is called a topology. At the start of the game, a topology is chosen, without players
knowing which one. We show that extending the concept of NE to these games can
take several forms. To this end, we propose two notions of NE: Conservative NE, in
which a player deviates if she can strictly add topologies to her winning set, and Greedy
NE, where she deviates if she can win in a previously-losing topology. We study the
properties of these NE, and show that the problem of whether a game admits them is
decidable.






Chapter 1

Introduction

Concurrent multi-player games of infinite duration over graphs are a standard mod-
elling tool for representing systems that consist of several interacting components, each
having its own objective. Each player in the game corresponds to a component in the
interaction. In each round of the game each of the player chooses an action and the
next state of the game is determined by the current state and the vector of actions
chosen. An example of a concurrent game can be seen in Figure 1.1. A strategy for a
player is a mapping from the history of the game so far to the next action.

A strategy profile (i.e., a tuple of strategies, one for each player) induces an infinite
trace of states, and the goal of each player is to direct the game into a trace that satisfies
her specification. This is modeled by augmenting the game with w-regular objectives
describing the objectives of the players.

Unlike traditional zero-sum games, here the objectives of the players do not nec-
essarily contradict each other. Accordingly, the typical questions about these games
concern their stability. Specifically, the most well-known stability measure is Nash
Equilibrium (NE): an NE is a strategy profile such that no single player can improve
her outcome by unilaterally deviating from the profile. The problem of whether a
multi-player game with w-regular objectives has an NE was shown to be decidable
in [BBM15].

In many settings, the players only have partial information about the system, or
can view only certain parts of it. This happens when e.g., the system has private and
global variables, and the players model threads that can only view the global variables.
To this end, games with partial information have been extensively studied in various
forms [BMM™21; BMV17; CD10; CD14]. However, in contrast to the full-information
setting, the problem of deciding whether a partial-information multi-player game of
infinite duration has a Nash equilibrium is undecidable in the general case where there
are 3 or more players [FGR18] or in the case of stochastic games [UW10].

In this work, we introduce and study Multi-Topology Games (MTG). Intuitively, an
MTG is a concurrent multi-player game with several transition functions (i.e., topolo-

gies). Then, players are fully aware of the possible topologies of the game, but do not



know which topology they currently play on. Thus, MTGs capture a restricted form of
partial information.
As we now demonstrate, MTGs naturally model the sort of partial information that

arises in the context of process symmetry.

Ezample 1.0.1. Consider a virtual router with multiple ports. When the router is
initialized, several processes are plugged in. The router assigns each process to a port
id, but the id is not revealed to the processes. Each process attempts to send messages,
and its goal is to have its messages delivered (where some messages may be dropped
due to heavy traffic). While the processes know exactly how the router works, they do
not know which port they are assigned to. Therefore, their strategies must be oblivious
to their port number.

As a concrete example, consider the concurrent game in Figure 1.1. The players
are blue and red, and the router has two ports 1,2. In every round each player can
try to send (action 1), or wait (action 0). The labels on the edges describe the actions
of the players. The first is the action of the blue player, and the second is the action
of the red player. From ready, if only the player in Port ¢ € {1,2} tries to send, the
game transitions to send;. If both players try to send, the router prioritizes the request
from Port 1. The objective of the player Port i is to visit send; infinitely many times.
Note that send; is colored according to the player that tries to reach it in each port
assignment. When both players know the port assignment, for example, blue —Port
1 and red -»Port 2, then blue can win by always taking action 1, and red will lose
in any strategy. However, if the port assignment is not known then in order for either
player to win under both port assignments, the players must coordinate e.g., by taking
turns trying to send a message. Thus, a-priori, the game has two possible topologies:

Figure 1.1a and Figure 1.1b.

00 00
10,11 01,11
01 10
start start
(a) blue »Port 1, red -Port 2. (b) blue —»Port 2, red »Port 1.

Figure 1.1: Router game with two players.

These type of settings are commonly referred to as process symmetry [CEFJ96;
ES96; ID93; LNRS16; Alm20], and have been studied in several contexts (e.g., model
checking with symmetry reductions). However, to our knowledge this setting has not
been studied in games. In Section 3.1 we demonstrate how MTGs can model the general

setting of process symmetry in games.



Settings where a component might enter an interaction without knowing the exact
configuration of the system are common, for example, in interactions over networks
where connectivity is not known a-priory [GTO07].

In an MTG, a strategy for a player maps sequences of states to an action, and hence
does not depend on a certain topology. Unlike standard games, a strategy profile in
an MTG no longer induces a single trace, but rather a set of traces, one per topology.
Thus, a player can no longer be said to be “winning” or “losing” in a strategy profile,
as this may vary between topologies. In particular, it is not clear how analogues of
Nash equilibrium and social optimum should be defined.

To this end, we propose two versions of Nash equilibria, Conservative NE (CNE)
and Greedy NE (GNE). In CNE we assume that players are conservative, that is, a
player might deviate only if the deviation leads to a better outcome in at least one
topology, without leading to a worse outcome in any topology. In this case, we only
consider deviations that lead to strictly better outcomes for a player. In GNE we
assume that players are greedy, that is, a player might deviate if she can improve her
outcome in a single topology, regardless of how it affects other topologies. GNE is useful
in cases where players might have unknown preferences over the different topologies. In
this case, we want to make sure that no player has a profitable deviation, under every
possible preference.

We study the properties of CNE and GNE and compare their strictness, showing
that a GNE is also a CNE, but the converse does not hold. We also compare their
properties to those of the standard notion of NE. Our main technical contribution is
showing that the problem of whether a game has a CNE is decidable in 2-EXPTIME,
and that the problem of whether a game has a GNE is decidable in EXPTIME.

Related Work A central work concerning NE in concurrent games is [BBM15], where
the problem of deciding whether a concurrent game admits an NE was studied for
various winning conditions. Apart from establishing tight complexity bounds, this work
also introduced the suspect game — a useful technique for reasoning about concurrent
games. Interestingly, the suspect game does not seem to be adaptable to reason about
MTGs, suggesting a fundamental difference between the models.

Zero-sum concurrent reachability games were studied in [DHKO07], where fundamen-
tal techniques for reasoning about them were developed. We remark that the zero-sum
setting is technically very different to ours, due to the non-adversarial nature of the
players.

In distributed computing, the notion of anonymity [AGMO02; GRO7] is similar to
process symmetry, in that it considers a setting where processes are interchangeable.
But, in contrast to process symmetry, all processes run the same program. In our
discussion of process symmetry, players are allowed to play different strategies. Anony-
mous games [DPO7] is another notion that resembles process symmetry. In this setting,

players are aware of their position in the game, but their objectives only depend on



the number of actions of each type that were taken, and not on the exact action of
individual players.

A concurrent game can be formulated as a turn-based partial information game,
by players choosing their actions one by one, without revealing any information on
the actions that were chosen until all players have selected their actions, and only
then take the corresponding transition. Partial information games are more expressive
than concurrent games — not every partial information game can be represented as a
concurrent game. Partial information games were extensively studied, e.g., in [CD10;
RHDCO07; CD14; BMM*21; BPRS17; DDG™10], typically in the zero-sum setting.

Finally, the work in [BMM™21] extends strategy logic [CHP10] with imperfect in-
formation. The authors show that, in general, the model checking problem for this
logic is undecidable, but it is decidable in some special cases. Strategy logic with im-
perfect information can be used for reasoning about MTGs. For more details refer to
Chapter 6.

Thesis organization In Chapter 2 we present the basic definitions of concurrent
games. In Chapter 3 we formally define MTGs, introduce two notions of equilibria
for them, and study their properties. In Chapter 4 we give our main technical result,
establishing the decidability of detecting CNE in MTGs. In Chapter 5 we establish the
decidability of detecting GNE. In Chapter 6 we show how strategy logic with imperfect
information can be used for reasoning about MTGs. Finally, in Chapter 7 we discuss

our results and some extensions, and detail future directions.



Chapter 2

Preliminaries

A concurrent game is a tuple G = (Pla, S, 59, Act, 0, (ap) pepia) With the following compo-

nents. Pla is a finite set of players, S is a finite set of states, sy € S is an initial state,

Pla

Act is a finite set of actions. The transition function d : Sx Act” @ — S maps a state and

an action profile (i.e., @ = (ap)pepia € Act”?) to the next state. a;, € S is the objective
of player p.
A play of G is an infinite sequence of states p = sg, $1,... € S such that for every

step 7 € N there exists an action profile a such that s;41 = 6(s;,a). For k> 1 we denote
the length-k prefix of p<j = S0, ..., 851 € ST. We denote by Inf(p) the set of states that
occur infinitely often in p.

In this work we focus on parity objectives. A parity objective « is defined by a
priority function over the states of the game Q :S — {0,...,d} for some d € N. For
a state s € S, Q(s) is called the priority or rank of s. A play p satisfies « if the
minimal priority of the states in Inf(p) is even. The objective o = Parity(Q2) € S¥ is
the set of plays that satisfy the above condition. We mostly use the parity function
implicitly, and so we do not include 2 in the description of G. We chose to focus on
parity objectives since other types of w-regular games can be translated into games
with parity objectives.

The description size of G, denoted |G| is the number of bits required to represent

the components of G.

Remark. Game representation. Note that we assume an explicit representation of the
transition function as a table. In particular, we describe for every state the transition

Pla_ Thus, the size of the transition functions is exponential

on every action profile in Act
in |Plal. This is in contrast with a more succinct representation, i.e., representing the
transition function as a circuit. This assumption is common in the literature [BBM15].

We take it to simplify the complexity analysis of our solution.

A history of G is a finite prefix of a play h € S*. A strategy for Player p is a
function o : S* - Act that maps a history to the next action of Player p. A strategy

profile o = (0p)pepia is vector of strategies, one for each player. We denote the set of all



strategies by X5 and the set of all strategy profiles by Eg'a (we omit the subscript G when

it is clear from context). A strategy profile o can be thought as a function that maps
histories to action profiles: given a history h € S* we have o (h) = (5,(h))pepia € Act’ .

For a strategy profile o we define its outcome to be the infinite sequence of states
(i.e. play) in G that is taken when all the players follow their strategies in o. Formally,
outg(o) = sps1... € S¥ where sp is the initial state, and for every i > 1 we have
s; = 0(8i-1,0(80,...,8i-1)). Consider a play p € S¥. The set of winners in p is the set
of players whose objectives are met in p. Formally, Wing(p) = {p e Pla|p e a,} c Pla.
The set of winners in a strategy profile o is then Wing (o) = Wing(outg(o)). Player p

is said to be losing if she is not winning.

Remark. Action visibility. Note that strategies are defined to only observe the history
of visited states, and not the history of actions taken by the other players. This is a
standard and natural assumption [BBM15; CD14] for concurrent models. There are,
however, works (e.g., [AAK15]) where players can view the entire action history. The
latter approach is slightly easier to reason about, as players have full information on
the game progress. In [AAK15] it was shown that assuming visible actions reduces the
complexity of the NE existence problem for parity games from being P|1|\Ip—complete to

being NP-complete. We expect a similar effect in our setting.

A strategy profile o is a Nash FEquilibrium (NE) if, intuitively, no single player can
benefit from unilaterally changing her strategy. Since the objectives in our setting are
binary, “benefiting” amounts to moving from the set of losers to the set of winners. We
refer to such a change as a beneficial deviation. Formally, consider a strategy profile o,
a player p € Pla and a strategy o, € ¥ for Player p. We denote by o[p ~ 0,] € yPla
the strategy profile obtained from o by replacing o, with O‘Z,). Then, o is an NE if for
every player p € Pla and every strategy o, € X5 for Player p, if p € Wing(a[p+ 0,])
then p e Wing (o). Viewed contrapositively: if p loses when G is played with o, then p

also loses after changing her strategy.



Chapter 3
Multi-Topology (Games

An MTG is a tuple G = (Pla,S, s, Act, Top, (0¢)teTop: (Qtt,p)teTop,pePla) Where Pla, S, s,
Act, are the same as in concurrent games. Top is a finite set of topologies, and for every
t € Top we have a transition function d; : S x Act™ — S and objective ayp € S¥ for every
player p € Pla. An MTG can be thought of as a tuple of games over the same states,
players and actions. That is, for ¢ € Top, we define G; = (Pla, S, so, Act, &, (at¢,p) pepla) to
be the concurrent parity game obtained by fixing the transition function to d; and the
objective for Player p to o .

Crucially, players are assumed to have no a-priori information on which topology
is selected when the game is played. This is captured in the definition of strategies:
a strategy for Player p is identical to the setting of concurrent parity games, i.e.,
op + ST = Act. This lifts to strategy profiles and outcomes, as per Chapter 2. In
particular, a strategy o in G can be applied to G; for every t € Top. Although players
have no information at the start of the game on which topology is played, they might
reason about the set of possible topologies as the game progresses. For example, if the
observed history is not possible in some topology, the player knows that this topology
is not played. This is captured implicitly in the way strategies are defined. Consider a
strategy profile o € P2, The winning topologies of Player p is the set of topologies that
Player p wins in when G is played with strategy profile . Formally, WinTopg(a) =
{t € Top | p e Wing,(o)}.

3.1 Process Symmetry in Concurrent Games

As we discuss in Chapter 1, a central motivation for MTGs come from settings where
players plug in to the system without knowing their identity. This setting is commonly
referred to as process symmetry [CEFJ96; ES96; ID93; LNRS16; Alm20]. Symmetry in
games was studied in [TV19; Stell; BFH11; Ham13] for strategic form games, which
are games with a single turn. In [BMV17; Ves12|, symmetry in concurrent games was
studied by imposing restrictions on the game structure. We consider a different setting,

where processes 1,. .., k log into a system described as a concurrent game, but the index



of the action controlled by each process is not revealed to the processes. This setting
is naturally modelled as an MTG, as follows.

Consider a concurrent game G = (Pla,S, so, Act,d, (ap)pepla) with & > 2 players,
and that Pla = {1,...,k}. We obtain from G an MTG with k! topologies by let-
ting each topology correspond to a different permutation of the players. Formally,
consider a permutation 7 € S, were Sy is the set of permutations over {1,...,k}.

For an action profile a € Act™"

we define m(a) = (ar-1(1),---s0r1@k)). That is,
the action performed by Player i is taken at index 7(i). We now obtain the MTG
Gr = (Pl1a,S, s0, Act, Sk, (07 ) resSy, s (O p)res,, pePla) Where Sy, is the set of topologies, dr is
obtained by applying 7 to the action profile of the players, that is, for s € Sand a € Act™'?

we have dr(s,a) = 6(s,m(a)). Finally, the objective of Player p is axp = az(p). Fig-

ure 1.1 is an example of such game.

3.2 Solution Concepts

Recall that in NE, a beneficial deviation moves a player from losing to winning. In
MTGs, however, winning is no longer binary. Indeed, a strategy profile associates with
each player a set of winning topologies. Thus, the meaning of “beneficial deviation”
becomes context dependent. We introduce and study two notions of equilibria for MTGs
that lie on two “extremities”: in the conservative approach, a deviation is beneficial if
it strictly increases (w.r.t. containment) the set of winning topologies. In the greedy
approach, a deviation is beneficial if a previously-losing topology becomes winning. We

now turn to formally define and demonstrate these notions.

Conservative NE A conservative NE (CNE) is a strategy profile o where no player
can deviate from o and have her winning topologies be a strict superset! of her winning

topologies when obeying o. Formally, o € P2 is a CNE if the following holds:

Vp € Pla Yo, € X7 ((Vt € Top p e Wing, (o[p = 0,]) » p € Wing, (o))v
(3t € Top p ¢ Wing, (o[p ~ o)) Ap € Wing, (o))

Equivalently, this condition can be written in terms of the set of winning topologies:
Vp € Pla Yo, € ¥ ~(WinTop} (o) ¢ WinTopy (o [p = a,,]1))

We refer to this notion as conservative since a deviating player wants to conserve

her existing winning strategies.

Greedy NE A greedy NE (GNE) is a strategy profile o where no player can unilat-

erally deviate and win in a previously-losing topology. Formally, o € 72 is a GNE if

'The relation ¢ means “strictly contained”.
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the following holds:
Vp € Pla Yo, € 7 Vt € Top (p € Wing, (o[p = 0,]) = p € Wing, (o))
Equivalently, this condition can also be written in terms of the set of winning topologies:
Vp € Pla Yo, € ¥ (WinTopj(a[p = 0,]) € WinTopg (o))

The latter formulation shows that in a GNE, for every player and for every deviation,
the player’s winning topologies when deviating are a subset of the player’s winning
topologies when obeying o. It refer to this notion as greedy since it assumes that
a player deviates if she improves her outcome in a single topology, disregarding the

outcome in other topologies.

Ezample 3.2.1. CNFE and GNE. Recall the router game from Figure 1.1. The strategy
profile where Player blue repeatedly plays (0,0,1,1)* and red plays (1,1,0,0)“ is a
CNE, since the set of winning topologies of this profile is {1,2} for both players. Thus,
no deviation can win in strictly more topologies.

Note that the same strategy profile is also a GNE, since every set of winning topolo-

gies is a subset of {1,2}.

Remark. Additional notions of NE. CNE and GNE are based on the € preorder on the
sets of topologies, 27°P. In Chapter 7 we discuss other notions of NE in MTGs.

3.3 Properties of CNE and GNE

We start by examining some properties and relationships between the notions of CNE
and GNE, as well as their relation to standard NE.

Consider an MTG (Pla, S, so, Act, Top, (¢ )teTops (Ctt.p ) teTop,pePia)- The following ob-
servation is immediate from the definitions of GNE and CNE;, since if there is only a

single topology, the MTG collapses into a concurrent game.

Observation 3.3.1. If Top = {t¢}, i.e. there is only a single topology ¢, then the
definitions of NE in G; coincides with that of CNE and of GNE in G.

Next, we observe that GNE is a stricter notion than CNE. Indeed, a beneficial
deviation in the conservative setting (namely increasing the set of winning topologies)
implies a beneficial deviation in the greedy setting (namely winning in a previously-
losing topology). Contrapositively, if there is no greedy beneficial deviation, there is

also no conservative beneficial deviation. We thus have the following.
Observation 3.3.2. Let G be an MTG. If ¢ is a GNE in G then o is a CNE in G.

The following example shows that the implication of Observation 3.3.2 is strict. That
is, there are MTGs with a CNE but without a GNE.

11



start start
| |
(a) t1 (b) £

Figure 3.1: A single player MTG with two topologies, 1 and t2. In both topologies,
the objective of the player is to reach sq.

Example 3.3.3. CNE without GNE. Consider the single-player game depicted in Fig-
ure 3.1. The outcome of the game depends only on the first action that the player
takes and the topology that the game is played in. If the player takes action 1, then the
set of winning topologies is {t1}. If the player takes action 2, then the set of winning
topologies is {to}. Since {t1} ¢ {t2} and {t2} ¢ {t1}, there is no GNE in the game, as
the player can switch strategies from t; to ¢t and vice versa to win in a previously-losing
topology.

However, since there is no strategy for the player such that the set of winning
topologies is {t1,t2} (the only strict superset of {t1} and {t2}), then every strategy is
a CNE.

Remark. Best-response dynamics in GNE. Example 3.3.3 demonstrates that, in stark
contrast to NE, an MTG might not have a GNE even when there is only a single player.
This has to do, in particular, with the notion of best-response dynamics: in standard
games, one can approach an NE by starting from some profile, and repeatedly letting
players deviate to their best-response strategy, until this process converges. While this
does not always converge, it does so for a large class of games (e.g., finite-potential
games [NRTVO07]).

Thus, Example 3.3.3 shows that best-response does not converge even for a single
player in MTGs, whereas it does converge for a single player both for standard NE,
as well as in CNE for MTGs. Indeed, the best-response of a single player in the
conservative setting will increase her set of winning topologies to the maximum, and

from there she will no longer have incentive to deviate.

Remark 4 reflects the intuition that a GNE must be stable in each topology sepa-

rately. That is, it captures the notion “NE on all topologies”, in the following sense.
Observation 3.3.4. A GNE o is also an NE in G; for every t € Top.

Indeed, if o was not an NE in G; for some t € Top, then a player that deviates from
o in G; would similarly deviate from o in G, greedily winning in the previously-losing
topology t.

In contrast, we now show that CNE is a more intricate notion, and might hold even

when there is no NE in the separate topologies.

12
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(a) t1 (b) t2

Figure 3.2: Symmetric XOR game.

Ezxample 3.3.5. CNE without NE. Consider the Symmetric XOR game G depicted in
Figure 3.2. The players are blue and red. In topology t;, the objective of blue is to
reach s1, and the objective of red is to reach so. In topology to the objectives of the
players are swapped. The game starts from sg. If both players take the same action,
then the game transitions to state s; and gets stuck there. If the players take different
actions then the game transitions to s and gets stuck there. Note that neither G
nor Gy, have a NE, since if a strategy for a single player is fixed, the other player can
respond to it and win.

On the other hand, any strategy profile is a CNE, since every player always wins
in exactly one topology. Thus, there is no way for a player to deviate and get strict

superset of winning topologies.

There are MTGs without CNE. For example, every concurrent game G without an
NE can be viewed as an MTG with a single topology t;. Since there is no NE in
G, then for every profile o there exists a player p that loses with o, which cor-
responds to WinTopg(O') = @ but p can deviate and win G, which corresponds to
WinTopg (a[p + 0,]) = {t1}. Since @ ¢ {t1}, then & is not a CNE.

13
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Chapter 4

Existence of Conservative NE is
Decidable

We now turn to our main technical contribution — showing that the existence of a CNE

is a decidable property.

Theorem 4.1. The problem of deciding, given an MTG G, whether there exists a CNE
in G is in 2-EXPTIME.

The remainder of the section is devoted to proving Theorem 4.1. Our solution is
based on a reduction to the problem of solving a restricted form of partial-information
game. We then employ a result from [CD14], and obtain the complexity result by a
careful analysis of the construction. The rest of the section is organized as follows. In
Section 4.1 we present the model of partial-information games and the result of [CD14].
In Section 4.2 we give an overview of the reduction and in Section 4.3 we describe and

analyze the reduction from our setting.

4.1 Partial-Information Games

Partial-information games (also known as games with incomplete information) are a
ubiquitous model for settings where the players cannot fully observe the state of the
game due to e.g., private/hidden variables, unknown parameters or abstractions of part
of the system.

Formally, a partial-information game is a tuple G = (Pla,S, so,Act,d, (Op)pepla)
where Pla; S, sp, Act and 0 are the same as in concurrent games. For every player
p € Pla, the set of observations O, ¢ 25 is a partition of S. We omit the acceptance
condition, and we will include it explicitly in Theorem 4.2 below.

Intuitively, when the play of G is at state s € S, Player p can only observe o € O,
such that s € 0, and needs to select an action according to o. Thus, we distinguish
between state histories, S* and observation histories (of Player p), (O,)*. For s €S we

define obsy(s) = 0 € O, to be the unique observation of Player p such that s € 0. We

15



extend obs, to histories: let h = sps1...s5; € ST be a state history, we define obs,(h) =
obs,(s0)obsp(s1),...,0bsy(sk) € (Op)* to be the corresponding observation history.
Strategies are observation based, that is, a strategy for Player p is a function o, :
O, — Act. Since different players may have different observation sets, we denote by Eg
the set of all strategies for Player p. We denote by Zg'a the set of all strategy profiles.
Similarly to concurrent games, a strategy profile o can be thought of as a function

Pla " and we define

that maps histories to action profiles o(h) = (g,(0bs,(h)))pepia € Act
outg(o) € S¥ similarly to concurrent games.

We say that Player p € Pla has perfect information if O, = {{s} | s € S}. That is,
Player p can observe the exact state of the game. If all players have perfect information
then the game is a perfect information game, and coincides with our definition of
concurrent games. We say that Player i is less informed than Player j if O; is a
refinement of O;. That is, for every o; € O; there exists o; € O; such that o; € o0;.

Finally, consider an objective « € S¥, we say that « is visible to Player p if for every
p, p' € S¥ such that obs,(p) = obs,(p") we have that p € o if and only if p’ € a. That is,
the objective can be defined according to observation sequences rather than plays.

The following theorem is a result from [CD14] that will serve as the target of our

reduction.

Theorem 4.2. Let G = (Pla, S, so, Act, d, (Op)pepia) be a partial information game, with
Pla = {1,2,3} where Player 1 is less informed than Player 2. Let o € S* be par-
ity objective over S. The problem of deciding whether o1 € 2(1; Yog € 2(2; dog €
Zé outg(o1,02,03) € a is 2-EXPTIME complete.

4.2 Overview of the Reduction

We now turn to describe a reduction from the CNE existence problem to the setting
of Theorem 4.2. We start with a high-level description. Consider an MTG G. Instead
of asking directly whether G admits a CNE, we first fix a set of “intended” winning
topologies T, ¢ Top for each player p € Pla. Then, we ask whether G admits a CNE o in
which WinTopg(a) =T, for every p € Pla. If we are able to answer the latter problem,
we can iterate over every possible tuple (7},)pepia (or nondeterministically guess a set)
and conclude whether G admits a CNE. We remark that this approach is reminiscent
of the technique in [BBM15], where the existence of an NE in a game is decided by
first guessing a “witness” path.

Once the set of intended topologies is fixed, we construct a 3-player partial infor-

mation game whose players are Eve, Adam and Snake, with the following roles:

e Eve controls the coalition of all players, and suggests a strategy profile o by

selecting the actions for all the players at each step.

e Adam selects a deviating player p, and the deviating strategy 0';, for that player. In
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addition, Adam selects a set T € Top in which Player p tries to win when playing

o)

« Snake helps! Eve by selecting a concrete topology t from the set T picked by
Adam.

The game starts with Adam and Snake choosing p, T" and ¢ € T'. It then proceeds with
Eve and Adam choosing o and O';), respectively, while playing on G;. The observation
sets of the players are such that both Eve and Adam can only observe the current state
of the game, so Eve is ignorant of p, 7" and ¢, and Adam is ignorant of ¢ (except knowing
that t e T).

The objective of Eve and Snake is then composed of three conditions:
1. Snake must choose a topology ¢ € T.

2. If the strategy UI'J proposed by Adam does not in fact deviate from the profile o
proposed by Eve (dubbed “Adam obeys Eve”), and if ¢ € T, i.e., p was intended to

win in ¢, then the outcome must be winning for Player p.

3. If Adam selected T to contain a topology not in T), (i.e., Player p potentially tries

to win in a superset of T},), then the outcome must be losing for Player p.

The overall idea is that if Eve can find a strategy for all the players, from which any
deviation choice of Adam can be shown to be non-beneficial by an appropriate choice
by Snake, then there is a CNE with the intended winning topologies, and vice-versa.
There are, however, some caveats: first, in order to allow Adam to choose any set of
topologies, the size of the game would be exponential, which is undesirable. Second, it
is not immediate that the conjunction of conditions above can be captured by a small
parity objective (since the parity condition does not allow conjunction without a change
of state space [Bokl18]). Third, we need to separate the cases where Adam obeys Eve.

In the following we give the complete construction, which overcomes these caveats.

4.3 Reduction to Partial Information Game

Consider an MTG G = (Pla,S, sg, Act, Top, (6t ) teTop, (Ct,p)teTop,pePla). For every Player
p € Pla, fix T}, ¢ Top to be the intended set of winning topologies.

Game construction We construct a 3-player partial-information game H with the
following components. The players are Eve, Adam and Snake. The states of H are Q¢ =
{go}uQ, where qq is a designated initial state and Q € SxPlax2TPx Topx {true, false}
is described in the following. A state (s,p,T,t,b) € Q comprises s € S which tracks the
state of G, a player p € Pla that is controlled by Adam, a set T € Top of topologies that

Tt is arguable whether this matches the biblical interpretation. This work makes no theological

claims.
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Adam picks, t € Top is a topology picked by Snake and determines the topology G is
played in, and a bit b € {true, false} which tracks whether Adam obeys Eve.

To make |Q| polynomial in |G| we restrict the component containing sets of topolo-
gies. Instead of allowing Adam to chose any T € 27°P, that he intends to win with the
selected player p, we observe that it is enough to consider only the sets that add a
single topology to T}, in case that Adam wants to show a profitable deviation, and all
the sets containing a single topology, in the case that Adam wants to show that Eve fails
to get the desired outcome in this topology. We define T, = {T, u {t} | t € Top} c 2T°P
and T = (Upepia Tp) U {{t} | t € Top}. Note that |T| < (|Pla] + 1) - |Top| < 2- |Pla| - [Top|.
We now define @ =S x Plax T x Top x {true,false}.

We now turn to define the transitions in H. The actions are defined implicitly by
the transitions.? From qo, Adam selects a player p € Pla and a set of topologies T € T,.
As explained in Section 4.2, Adam controls Player p and attempts to show that p wins
in T'. Still in ¢p, Snake selects a topology t € Top that G will be played in. Then, H
transitions to state (so,p,T,t,true) € Q.

Henceforth, p, T and ¢ remain fixed throughout the play, and Snake has no further
effect on the play. From state (s,p,T,t,b) € Q, Eve chooses an action profile a € Act”™?
and Adam selects an action az'g € Act. Then, the game transitions to state (s',p,T,t,b") €
Q such that s' = §;(s,a[p = a,]), and (0’ = b) A (ap = a;,). That is, Eve chooses an
action profile, Adam chooses a possible deviation, and the game proceeds according to
G;. If Adam actually deviates, the bit b becomes false and remains so throughout the
play. Adding {{t} |t € T} to T is to make sure that if Player p is supposed to win
in topology t (that is, ¢t € T},), then, the profile suggested by Eve must lead to player
p winning in topology ¢. If not, Adam can choose {t} and Player p at the start of the
game, and obey Eve, falsifying one of Eve’s winning conditions.

Next, we define the observation sets of H. For a state ¢ = (s,p,T,t,b) € Q we define
the projection of ¢ on G to be proj(q) = s. For every state s €S of G, let 05 = {q € Q |
proj(q) = s} € Q. The observation sets in H are Opgan = Orve = O = {{qo}}U{0s | s € S}.
That is, Adam and Eve can observe the initial state qg, and for every ¢ € ) they can
only observe proj(q). Snake has perfect information.

This completes the construction of the game #H (recall that H does not have an

objective). We proceed to formalize the connection between G and H.

Correspondence between H and G We lift the definition of projection to plays:
for a play p = qoq1g2... € o - Q“ of H define proj(p) = proj(q1)proj(gz)... (note that we
skip the initial state qp). We also define the predicate obey(p) = Ajs1 bi, where b; is
the true/false bit of ¢;. That is, obey(p) is true if and only if Adam always takes the
actions suggested by Eve. When obey(p) is true, we say that Adam obeys Eve.

%In the model we describe, actions are identical for all players. However, the model of [CD14] allows
different actions as well as enabled and disabled actions in each state, so it is easy to accommodate our

actions.
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Since the observation of Eve and Adam correspond to states of G, there is a corre-
spondence between plays, observation-histories and strategies in H to plays, histories
and strategies in G. We make this precise in the following. Consider the function 7yps :
{qo}-O¥ - S¥ defined Yobs({q0}, 055 Osy5 - - -) = S0, S1, - ... Since o5 = {q | proj(q) = s} for
every s € S, we have that .5 is a bijection between observation-plays of Eve and Adam
in H, and plays of G. By looking at finite sequences, namely histories, we can refer to
Yobs as & bijection between observation-histories of Adam and Eve in #, and histories in
G. Moreover, since strategies in ‘H are observation based, the following functions are

also bijective:
® "Eve * E%’e - Eg defined by ’YEve(O-Eve) = OEve © ’7(;][:}5-

* Yadam : Eg_?am = Upepiaip} x Tp x Eg defined Yagan(0prdan) = (p, T, UI'J) such that
ondan(q0) = (p,T) are the player and the set of topologies selected by Adam in
state ¢, and 0']’3 = Opdam © 75&8 is the deviating strategy in G induced by the

deviation proposed in opgan in H.

* Ysnake E%‘ake — Top defined by 7snaxe(Tsnake) = Tsnake(qo) (recall that Snake

only acts in qq).

For readability, we omit the subscript and write 7 instead of Yobs, Yadam, VEve, Ysnake- 1he
correct subscript can be deduced from context. Intuitively, «y is the correspondence from
strategies/histories/plays in H to their counterpart in G.

The connection between strategies and outcomes in ‘H and G is formalized in the

following lemma:

Lemma 4.3.1. Consider strategies ogye € 5,°, Oadan € 23;°" and Ognaxe € L5725, Let
o =v(0kve), (0, T,0,) = V(Ongan) and t = Y(Osnake). Let p = outy (Orve, Cadan; Tsnake),
7' = outg,(a[p 0,]), and m = outg,(o). Then proj(p) = 7'. Furthermore, if Adam
obeys Eve on p then proj(p) =m =m'.

Proof We prove by induction that for every k > 1, proj(p<x+1) = 7.y, and if Adam obeys
Eve then proj(p<i+1) = 7oy, = mep. For k=1, peo = qo, (s0,p,t,T,bo) and 7l = 7<1 = 59
and we have that proj(p<x+1) = mL;,. Assuming that proj(peps1) = my, for k > 1,
the next state of proj(p) will depend on the transition function §; and action profile
a[p+ o,](r.,;,) from the way v and the transitions of H are defined, and the next state
in 77’ will also depend on the same transition function and action profile. Thus, it holds
that proj(p<x+2) = m.,1. Farther more, if Adam obeys Eve then in every step the action
that Adam takes is identical to the action that Eve suggests for Player p, so we have

that O'[p = O-I,J](ﬂ;k) = U(ﬂ;k)7 and Tepeq = ﬂ-;kﬂv thus, pI"Oj(ngg) =T<k+1 = W;kﬂ-
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Objective for H As sketched in Section 4.2, the objective « in H is constructed so
that Eve and Snake can win if and only if there is a CNE in G with winning topologies
(Tp)pepra-

We define @ as a conjunction of three conditions a = {p € qo- QY | ¥1(p) A
wa(p) A 3(p)}, where the conditions are defined as follows. Consider a play p =
q0, (s0,p,T,t,bo), (s1,p,T,t,b1),... of H.

o Y1(p) :=t € T. That is, ¢; forces Snake to choose a topology from the set of
topologies selected by Adam.

o 2(p) = (obey(p) At e T,) » proj(p) € oy p. That is, 1)y is satisfied if whenever
Adam obeys Eve then Player p wins in the topology ¢ € T}, selected by Snake.

o 3(p) =T, ¢ T - proj(p) ¢ arp. That is, 13 is satisfied if whenever Adam tries
to win in a strict superset of T),, then Player p loses in the topology selected by

Snake.

As mentioned in Section 4.2, it is not clear that o can be expressed as a single parity
objective over Q. Nonetheless, we prove that this is possible. The key observation
is that the “postconditions” of w9 and 3 contradict, hence one of them must hold
vacuously. This allows us to decouple the parity conditions for each of them and obtain
a single parity objective that captures both, as follows.

For each objective oy, in G we write oy, = Parity(£2;,) such that ©;, : S -
{0,...,d} is the parity ranking function, where d € N. We define a new ranking function
Q:Qy — {0,...,d+ 1}, and show that « = Parity(Q).

Observe that gg occurs only once in a play, so its priority has no effect. We arbitrarily
set 2(qo) =0. Let p e qp- Q¥ be a play of H and (s,p,T,t,b),(s",p',T',t',b") € Inf(p).
It must be that p=p’, T =T’ and t = t’ since those are constant throughout the play,
and b = b since it is either always true or from some point in p it turns into false and
stays that way to the rest of the play.

Let g = (s,p,T,t,b) € Q. We define Q(q) by cases according to p,T,t,b, and show
that in each case, p € « if and only if p € Parity(§2), concluding that o = Parity(Q2). For
a formula of the form ¥ = 1 — @2, we refer to p; as the precondition of ¥, and @2 as

the postcondition of 1.

e t ¢ T: In this case, if ¢ € Inf(p) then p does not satisfy 1, thus, p ¢ a. We set
Q(q) =1 to get p ¢ Parity ().

e teT,b=true, teT,and T, ¢ T: In this case, if ¢ € Inf(p) then p satisfies the
preconditions of both 12 and 3, but the postconditions of 19 and 13 contradict,
thus, p ¢ . We set Q(q) =1 to get p ¢ Parity(Q).

o teT,b=truenteT, and -(T, ¢ T'): In this case, if ¢ € Inf(p), then pea —
proj(p) € arp. So we set Q(q) = Qg p(s), to apply the objective oy, over proj(p).
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o teT, ~(b=truenteT)) and T, ¢ T: In this case, if g € Inf(p), then pe o —
proj(p) ¢ a4 p. So we set Q(q) = Q4 p(s) + 1, to apply the complement of the

objective a4, over proj(p).

o teT,-(b=truenteT))and (7, ¢ T'): In this case, if ¢ € Inf(p) then 15 and )3
are vacuously satisfied, and p € a. So we set (q) =0 to get that p € Parity(Q2).

We are now ready to characterize the existence of a CNE in G by winning strategies
in H.

Lemma 4.3.2. Consider an MTG G = (Pla,S, sg, Act, Top, (6¢)teTop, (C.p)teTop,pePla) -
Let (T},)pepia be sets of topologies for each player and let H be the corresponding partial-
information game. There exists a strategy profile o in G such that o is a CNE and for

every p € Pla we have WinTopg(O') =T, if and only if the follwing holds:

J0Eve € 25)° VO pdam € Y47 Jognake € ngake outy(Cgve, Tadam, Tsnake ) € (V.
Proof Assume o is a CNE in G such that for every p € Pla, WinTopg(a) =T,, and
fix ogye = 7 1 (o) to be the corresponding strategy for Eve in H. Consider a strategy
Opdan € 2372" for Adam, and let (p,7, 0,) = Y(Ongan). We show that there exists a
strategy Ogspaxe € Z%’ake so that the outcome satisfies a. Recall that a strategy for
Snake amounts to choosing a topology. We divide to cases according to the choice of
T by Adam.

o If -(T), ¢ T), then 13 is satisfied vacuously. Choose t € T' for Snake, then ;
is satisfied. If Adam does not obey Eve or ¢ ¢ T}, then v, is vacuously satisfied.
Otherwise, if Adam obeys Eve and t € T}, let p = outy(0gve, Tadan, Osnake ). I order
to show that 1 is satisfied we need to show that proj(p) € ;. Let ™ = outg, (o).
Since T), = WinTopg (o) and t € T}, we have that 7 € oz . From Lemma 4.3.1 we

have that proj(p) = 7, so we get that proj(p) € ayp, as required.

o If T, ¢ T, denote T" = WinTopg(a[p = a,]). Since o is a CNE, we have that
~(T, ¢T"), so T~ T" # @, as otherwise we would have that T, ¢ ' c T". Choose
t € T \T' for Snake, then vy is satisfied. Let p = outy(0kve, Oadan; Osnake ), T =
outg,([p+ 0,]) and 7 = outg, (o). From Lemma 4.3.1 we have that proj(p) = 7’
and if Adam obeys Eve then we have proj(p) = 7 = «’. Note that since t ¢ T =
WinTopg(a[pH 0,]) then 7' ¢ ayp, so 13 is satisfied. Finally, 1y is satisfied
vacuously since we cannot have ¢ € T}, and that Adam obeys Eve simultaneously,
as this would yield 7" = T, = WinTop{ (o), but ¢ ¢ T".

We conclude that in all cases p € a, as required.

Conversely, assume that ogye € 25_2’ ¢ is such that for every opgan € Eé?am there exists
OSnake € Z%ake such that outy (0kve, Ordam; Osnaxe) € @. Let o = y(0gve). We start by
showing that for every p € Pla it holds that WinTopg(O') =T),. Indeed, let p € Pla and
t € Top.
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Ift € T}, take opgan € E%{da’“ that selects player p and T' = {t}, and obeys Eve. The only
strategy osnaxe for Snake that satisfies 11 is to select t. Let p = outy (0kve, Oadam; Tsnake )-
From 12 we get that proj(p) € ayp, and by Lemma 4.3.1 we have proj(p) = outg, (o).
Thus, t € WinTopg ().

If ¢t ¢ Tp, take opgan € L3 that selects Player p and T = T}, u {t}, and obeys Eve.
Since Adam obeys Eve, in order for 11, ¥ and 13 to be satisfied, Snake must choose
t, otherwise both preconditions of 9 and 3 hold, which means that in order to win
we must have both proj(p) € a¢p, (by 1¥2) and proj(p) ¢ oy, (by t3), which cannot
hold. Thus, Snake chooses t, and from Lemma 4.3.1 we have proj(p) = outg, (o).
By ¢3 we have proj(p) ¢ at,, so outg, (o) ¢ atp. Thus t ¢ WinTopg (o). Therefore,
WinTopg (o) = T).

It remains to show that o is a CNE. Assume by way of contradiction that there exists
a player p € Pla with a beneficial deviation o, € ¥¢. That is, T" = WinTop{ (o [p = o,,])
satisfies T, ¢ T”. We will construct a strategy of Adam such that every strategy of
Snake is losing, thereby reaching a contradiction. Let T' =T, u {t'} for some t' € T'\ T,
and fix opgan = 7 1 (p, T, 01’3). Consider a strategy Ospake, denote t = ¥(0spaxe) and let
p = outy;(Ove, Cadam; Tsnake)- By Lemma 4.3.1 we have proj(p) = outg, (o[p = 0,]), and
because t € T'c¢ WinTopg (o[p = 0,]) it holds that proj(p) € at,. However, T), ¢ T, so

13 is violated, and p ¢ a, which is a contradiction. We conclude that o is a CNE. =

Using Lemma 4.3.2 we can decide whether a given MTG G has a CNE, by iterating
over all possible sets of candidate winning topologies (7},)pepia, and repeatedly applying
the reduction, and using the decision procedure of Theorem 4.2. It remains to analyze
the complexity of this procedure.

To this end, observe that the size of H is polynomial in the size of G. Indeed,
|Q| < |S]-|Pla]-|T]-|Top| -2 where |T| < 2|Pla||Top|. The description of the actions is also
polynomial in that of G (note that Eve has exponentially more actions than each player
in G, but the overall description of the transition table in G is similarly exponential, cf.
Remark 1). From Theorem 4.2, solving H takes double-exponential time in |G|. In the
worst case, we will iterate over all 2/TPHP1al options for (T})pepia, which is exponential
in |G|. Repeating the double-exponential procedure an exponential number of times

results in a double-exponential algorithm. This completes the proof of Theorem 4.1.

Remark. Lower bounds and improving the upper bound. We do not have a lower bound
for the 2-EXPTIME complexity of Theorem 4.1. Indeed, we suspect that this bound can
be lowered. This is due in part to the fact that game H we construct does not utilize the
full scope of Theorem 4.2 from [CD14]. Unfortunately, the decision procedure in [CD14]
goes through three nontrivial reductions, one of which involves Safra’s determinization,
that is notoriously difficult to analyze: The first reduction [CD10; CD14] transforms the
objective to a visible objective for Adam which involves the determinization of a parity
automaton. The second reduction [CD14] reduces the three-player partial-information

game into a two-player partial-information game. The third reduction uses the results
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of [RHDCO07] to reduce the two-player partial-information game to a two-player perfect-
information game.

Therefore, it is likely that improving the bound (if possible) will involve devising
an ad-hoc procedure, possibly using some key ideas from [CD10; CD14; RHDCO07].
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Chapter 5

Existence of Greedy NE is
Decidable

We now turn our attention to Greedy NE (GNE). Recall that a greedy beneficial de-
viation is one that wins in a previously-losing topology, even at the cost of losing in
previously-winning topologies.
That is, given an MTG G = (Pla,S, s, Act, Top, (0¢)teTop, (tt,p)teToppePla), @ profile
o€ Eg'a is a GNE if for every p € Pla, o}, € ¥; and t € Top, if p € Wing, (a[p+ a,])
then p e Wing, (o).

Intuitively, reasoning in the greedy approach is much less delicate than the conserva-
tive approach, since a deviating player need not concern itself with keeping the current
winning topologies. As we show in the following, this allows for an exponentially faster

solution.

Theorem 5.1. The problem of deciding, given an MTG G, whether there exists a GNE
in G is in EXPTIME.

Similarly to Chapter 4, our approach is to reduce the problem at hand to solving a
partial-information game. In the greedy setting, however, it suffices to use two-player

games. Specifically, we employ the following result from [CD10].

Theorem 5.2. Let G = (Pla,S, sg,Act, §, (Op)pepia) with Pla = {1,2}. Let o € S¥ be a
parity objective. The problem of deciding whether 3o € Eé Yog € 2(2; outg(o1,02) € «
is EXPTIME-complete.

5.1 Reduction to Partial Information Game

Consider an MTG G = (Pla, S, so, Act, Top, (0¢)teTop, (t,p)teTop,pePla). For every Player
p € Pla fix T}, ¢ Top to be the intended set of winning topologies.

Game construction We construct a two-player partial-information game H with the

following components. The players are Eve and Adam. The states of H are Q = {qo}uQ
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such that g is a designated initial state and ) = SxPlaxTopx{true, false} is described
in the following. A state (s,p,t,b) € @ comprises of s € S which tracks the state of G, a
player p € Pla that is controlled by Adam, a topology t € Top that Adam picks, and a bit
b e {true,false} which tracks whether Adam obeys Eve.

We now turn to define the transitions of . The actions are defined implicitly by the
transitions. From state qp, Adam selects a player p € Pla to control and a topology t € Top
that G will be played in. Then, H transitions to state (sg,p,t,true) € Q. Henceforth,
p and t remain fixed throughout the play. From state (s,p,t,b) € @, Eve chooses an
action profile a ¢ Act™?
(s',p,t,b") € Q such that s’ = 0;(s,a[p ~ a,]), and b’ = b A (a, = ap).

The observation sets for the players, proj and obey are defined similar to Section 4.3.

, and Adam selects an action a;, € Act and H transitions to state

Correspondence between H and G, Yobs, Veve is defined in the same way as in Section 4.3,

and Yagan ° E?_?am — Upepia{p} x Top x EZZ[ is defined for v(oadan) = (p,t,0,) such that

(p,t) are the player and topology selected by oagan in state go and o, = Oagan © Vo
The connection between strategies and outcomes in H and G is formalized in the

following lemma whose proof is similar to that of Lemma 4.3.1.

Lemma 5.1.1. Consider strategies ogye € Eg_;’e and Opgan € Z%_?am. Let o = v(0gye) and

(pt,0,) = Y(Ongan)- Let p = outy(0rve, Oadgan) 7' = oUtg, (a[p = 0,]) and 7 = outg, (7).
Then, proj(p) = n'. Furthermore, if Adam obeys Eve on p then proj(p) =m =7".

Objective for H Let p=qo-(s0,p,t,b0)-(s1,p,t,b1)-... be a play in H. The objective
a is such that pe a < ¥1(p) A2(p), where

* 1(p) := (obey(p) At € Tp) > proj(p) € ap.
o P2(p) =1t¢ Ty~ proj(p) ¢ aup.

a can be expressed as a parity objective as follows. For every ¢ € Top, p € Pla, let € ),
S - {0, ...,ds,} be the priority function for the parity objective ay ), in G. We construct
a priority function Q:Qy — {0, ...,d} such that d = max{d;, + 1|t e Top,p € Pla}. We
set Q(qo) =0 and for state g = (s,p,t,b) € Q we have

Qt7p(8)+1 t¢Tp
Q(Q) = Qt7p(8) b/\tETp
Qq)=0 -bAteT,

If ¢t ¢ T}, then, according to «, p € « if and only if proj(p) ¢ oy p. This is achieved by
adding 1 to €, which gives us the complement of «;,. The case where Adam obeys
Eve and ¢ € T}, is captured in the second case, where p € « if and only if proj(p) € ay .
This is achieved by setting €2 to be the same as €);,. In the last case, none of the
preconditions of i1 and 5 hold, so p € a. This is achieved by setting 2 to 0, such that
every such play will satisfy the objective.
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Lemma 5.1.2. There exists a GNE o € S5 in G with WinTopg(U) =T, for every

p € Pla, if and only if ogye € E%’e VO pdam € Eé‘tiam outy (OEve, Oadan) € Q.

Proof Let o € X5 be a GNE with WinTopg(O') =T, for every p € Pla. Let ogye € £5/°
be the corresponding strategy for o, and let opgan € Zé‘fam be some strategy for Adam
that corresponds to (p,t,0,). Let p = outy (0rve; Tadan)- If obey(p) At € T, then from
Lemma 5.1.1 we have that proj(p) = outg, (o), and since ¢ € T, = WinTopg () then
outg, (o) € ayp. Thus, 9 is satisfied by p. If ¢ ¢ T}, then from Lemma 5.1.1 we have
that proj(p) = outg,(o[p + 0,]) and since Player p is losing in ¢ when § is played with
o and o is a GNE, then outg, (o[p = 0,]) ¢ atp. Thus, 9 is satisfied and p € a.
Conversely, let ogye € Zg{"e be such that for any opgan € Eé‘fam, outy (OEve, Oadan) € Q.
Let o € 35 correspond to ogye. We show that o is a GNE. First, we show that for every
p e Pla, WinTopg(a) =T,. Let t € Top and p € Pla. Take 0pgan € £37®" that corresponds
to (p,t,0,) where o, is the strategy assigned to p in o. Let p; = outg, (o) and p =
outy (Okve, Oadan)- We have that p € a. Since Adam obeys Eve on p, from Lemma 5.1.1
we have that proj(p) = p;. If t € T, then from 11 we get that p; = proj(p) € ayp,
thus, t € WinTopy (o). If t ¢ T, then from ¢, we get that p; = proj(p) ¢ ap, thus,
t ¢ WinTopg (o). So we get that WinTopy (o) = T. Now, we show that o is a GNE.
Let p € Pla, a]’) € Eg and t € Top such that ¢ ¢ T),. Let opgan € Eéfam correspond to
(p,t,a;,), and let p = outy(0gyve, 0adam). We have that p € «, thus, since ¢ ¢ T}, then
proj(p) ¢ aip. From Lemma 5.1.1 we have that p; = outg, (o[p = 0,]) = proj(p) ¢ ap,
thus, ¢t ¢ WinTopg, (a[p = 0,,]) = Tp, so o is a GNE. |

The algorithm for solving the GNE existence problem is the following. For every
(Tp)pepla € (27°P)P2 we construct H from G and (Tp)pepa. Then, we check if there
exists if there exists a winning strategy for Eve in H. If there is such a strategy, then,
according to Lemma 5.1.2, its corresponding strategy in G is a GNE and the algorithm
returns that there exists a GNE in G. If we went through all the sets (T},)pepia € (27°P)P'2
without finding a GNE, then the algorithm returns that there is no GNE in G.

The size of H is polynomial in the size of G. We copy each s € S for every combination
of p € Pla, t € Top, b € {true,false}, so we get |Qy| =2-|S|-|Pla|-|Top| + 1, which is
polynomial in the size of G. The number of actions in H is also polynomial in the
number of enabled actions in G (similarly to the analysis in Section 4.3).

[ToplPlal jterations, which is exponential in |G|. In

The algorithm performs at most 2
each iteration we solve H with size that is polynomial in |G|, so according to Theorem 5.2
this takes exponential time in |G|, so the GNE existence problem is in EXPTIME.

We now present a sketch of the proof for the correctness of the algorithm above.

Then, we can conclude Theorem 5.1.

Proof sketch As in Section 4.3, we first fix a set of “intended” winning topologies T}, €
Top for each player p € Pla. Then, we ask whether G admits a GNE o in which
WinTopg(a') =T, for every p € Pla. We then construct a 2-player partial-information

game whose players are Adam and Eve, where Eve controls the coalition of all players.
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The behaviour of Adam is different than in the conservative setting. Here, Adam
starts by choosing a deviating player p € Pla and a single topology t € Top where p
attempts to win. The topology t is unobservable by Eve. The observations sets of Eve
and Adam are again only the current state of G. Then, the game is played on topology
t with Eve suggesting an action profile, and Adam possibly deviating with Player p.

The objective for Eve now comprises two conditions:

1 requires that whenever Adam obeys Eve and t € T}, the outcome is winning for

Player p in G;.
1y requires that if ¢ ¢ T},, then Player p loses in G;.

Intuitively, Adam tries to cause Player p to win in a new topology ¢ in which Player
p is not intended to win, while Eve is trying to prevent Player p from achieving this,
provided that Player p is actually deviating. Note that Eve must do this without

knowing which topology is chosen, nor which player deviates (if at all). [ ]
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Chapter 6

Strategy Logic with Imperfect

Information

In this section we discuss solving the GNE and CNE existence problems using strategy
logic with imperfect information, SL;, introduced in [BMM™21]. SL; is an expressive
logic that is generally undecidable, but a decidable fragment, called hierarchical in-
stances, can capture the GNE and CNE existence problems. The complexity of SL;;
model-checking for hierarchical instances depends on a parameter called the simulation
depth. SLji model-checking for formulas with simulation depth up to k is (k + 1)-
EXPTIME-complete, and the procedure suggested in [BMM*21] is (k+1)-EXPTIME.
Our formulation of the GNE and CNE existence problems with SL;j, has a simulation
depth of 2 for both problems, resulting in 3-EXPTIME procedure for solving those
problems. This is a worse complexity result than the EXPTIME and 2-EXPTIME
results that we got in Chapter 5 and Chapter 4, respectively. It might be possible that
there is an alternative formulation with a lower simulation depth, resulting in a lower
complexity for this approach.

The section is organized as follows. In Section 6.1 we give a short overview of
SL;i. In Section 6.2 we discuss how to convert a multi-topology game to a model called
concurrent game structure with imperfect information that SL; is interpreted over.
Then, in Section 6.3 we formalize the GNE existence problem with SL; and compute

it’s simulation depth. In Section 6.4 we do the same for the CNE existence problem.

6.1 Overview of SL;

SL;; formulas are defined over a number of fixed parameters — a set of atomic propositions
AP, a set of players (or agents) Ag, a set of strategy variables Var and a set of observation
symbols Obs. SL; formulas are interpreted over a Concurrent Game Structure with
Imperfect Information, abbreviated CGS;. A CGS; is a tuple G = (Ac,V,E, L, vy, O)
such that Ac is a set of actions, V is a set of states, E : V x Ac*® - V is a transition
function, £ :V — 2A% is a labelling function, vy € V is an initial state and O : Obs — 2V*V
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is an observation interpretation, which maps each observation symbol o € Obs to an

equivalence relation over the states O(0) €V x V. SLj; has the following syntaz:

p=pl-plevel{z)¢|(a,z)e](a,?)p|EY; pe AP,z € Var,aeAg
Y=YV | Xy | U,

Formulas of type ¢ are called state formulas and formulas of type ¢ are called path
formulas. The boolean and temporal operators —, Vv, X, U have their usual semantics.
The syntax is extended with the boolean and temporal operators A, -, F, G that can be
expressed with the operators already in the syntax. The existential strategy quantifier
{x)°p means, “there exists a strategy = over the observations O(o) that satisfies ¢”.
The syntax is extended with a universal strategy quantifier defined [z]°%p = =(x)°-ep.
The binding operator (a,x) binds strategy = to player a and the unbinding operator
(a,?) unbinds player a from it’s current strategy. The ezistential outcome quantifier
Evy means “there exists an outcome of the current strategy assignment that satisfies
1”. The syntax is extended with a universal outcome quantifier defined Avy := -E—-1.
For a full description of the semantics of SL;; we refer readers to [BMM*21].

An SL;; instance is a pair (G, ®) where G is a CGS;; and ® is an SL;; state formula. In
general, SL;; is undecidable. But, a fragment called hierarchical instances is decidable.
An hierarchical instance is such that as we go down the syntax tree of the formula,
observations only get finer.

The complexity of the model-checking problem for an hierarchical SL; instance
(G, ®) depends on the simulation depth of (G,®). The simulation depth is computed
recursively on the formula’s structure. The complexity of the model-checking procedure
for an instance with simulation depth & is (k+1)-EXPTIME. For a description of how
to compute the simulation depth we refer readers to [BMM™21].

In this section we show how to translate an MTG to a CGS;; and a set of formulas that
describe the players winning conditions.

Let G = (Pla, S, so, Act, Top, (¢)teTop, (Qtp)teTop,pePla) be an MTG. We denote the
players Pla = {py...p,}. First, we fix the parameters over which the SL; formulas are
defined, AP, Ag, Var and Obs. The set of atomic propositions is such that we can
encode each state and each topology with a unique label (a subset of AP). This will
enable us to write the LTL formula 1, for every t € Top and p € Pla which means that
the topology t is played and p’s objective is satisfied. The set of agents is Ag = Plau{T'}
where T is the topology player that selects the topology. The set of strategy variables
is Var = {g, | p e Pla} u {0}, | p € Pla}. Since all players have the same observation sets
(i.e., can observe the state, but not the topology), we only need a single observation

symbol o. Note that every SL; instance with a single observation symbol is inherently
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hierarchical.

The CGS;; that we use is H = (Ac,V,E, L,v9, D). The actions in H are the actions
in G together with actions for T that enable him to select the topology in the first turn
of the game. The states of H are V = (S x Top) U {vg}, where vy is the initial state
where T selects the topology. The transition function corresponds to the transition
function of G, and allowing T to select the topology from the initial state vg. The
observation symbol o is interpreted such that vg is distinguishable from all other states
and ((s,t),(s',t")) € O(o) (that is, (s,t) and (s',¢") are indistinguishable) if and only

ifs=4g.

6.3 Expressing GNE Existence Problem with SL;

The following formula expresses the GNE existence problem in SLj;:

(o) (Pla,a) N [[[g;ﬂo( A (E@bt’pvﬁ(p,o;)E@bt,p))]

pePla teTop

Where (o) := (op, )° ... (0p, ) is a shorthand way of writing “there exists a strategy
profile”. Similarly, (Pla, o) := (p1,0p,) ... (Pn,0p, ) is binding the strategy profile to the
players. When all players except for the topology player T are bound to a strategy,
the formula E,; means that player p wins in topology ¢ under the given strategy
assignment. After we quantify over strategy profiles, we require that for every player
p in G, every strategy O';D and every topology t, either player p wins topology ¢t when
players are assigned strategy profile o or player p loses topology ¢t when she changes

her strategy to o,

Simulation depth Now, we compute the simulation depth of the instance. The
computation involves two parameters — first is the current simulation depth k£ € N
and the second is a parameter that can be either nd or alt. The computation is
performed according to Section 5.2 in [BMM*21]. Quantifying an LTL formula with
E gives the simulation depth (0,nd). Thus, sd (Et; ;) = (0,nd). Binding a strategy to
a player does not change the simulation depth, so we have sd((p, U;)E’lﬁt’p) = (0,nd).
Negating a formula keeps the current simulation depth the same and sets the second
parameter to alt. Thus, sd(ﬂ(p,al’))Ewt,p) = (0,alt). Taking a disjunction between
two formulas results in the maximum of each parameter of the subformulas (where
nd < alt), thus, sd (E?l)t,pV -(p, O'II))EQ[)tp) = (0,alt). The conjunction over all the
topologies translates into a negation, disjunction and another negation. Since each

subformula ¢ has sd (¢) = (0,alt), we have that:

sd( A\ (E@bt’p v ﬁ(p,U];)E’(/Jt’p)) =(0,alt)

teTop
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The universal strategy quantifier translates into a negation that does not change the
simulation depth, an existential strategy quantifier that increases the first parameter
by 1 and sets the second parameter to nd and another negation that sets the second

parameter to alt. So we have that

sd ([[g;}]o (t /T\ (Ewtyp v =(p, U;)E¢t7p))) = (1,alt)

Binding the strategy profile to the players has no effect and the universal strategy

quantifier increases the first parameter by 1 and sets the second to nd, thus,

pePla teTop

sd((<0'>>0(P|a,o') A\ [[[U;') O( A\ (E@Dtypv—‘(p,cr]’])Ewtyp))]) = (2,nd)

Making model-checking complexity of the instance to be 3-EXPTIME.

6.4 Expressing CNE Existence Problem with SL;

The following formula expresses the CNE existence problem in SL;:

(a)(Pla,o) A &

pePla

6= o)1 (( A (Ebp v~ o;)Ewt,n) ( V (Evipn ﬁ@,a;,)m,,,)))

teTop teTop

The formula for CNE is similar to the formula for GNE. We change the subformula
NteTop (Ewt,p v ﬁ(p,al’,)Ewtp), which means that for every topology ¢, player p does
not improve her outcome by switching to strategy O‘I’), by taking a disjunction with
VieTop (Ewt,p A =(p, a}’D)Ez/Jtp), which means that there exists a topology where player p

wins, and loses if she changes her strategy to 0]’).

Simulation depth The simulation depth of the formula Atetop (E@bt,p v =(p, az’g)Ewt,p)
and the formula Vietop (Eq/)m,/\ -(p, a;)E¢t7p) is the same and is equal to (0,alt).
Thus, the conjunction of the two results in a formula with simulation depth (0,alt).
The next steps in the computation of the simulation depth are identical to the com-
putations for GNE, making the simulation depth be (2,nd) and the model-checking
complexity to be in 3-EXPTIME.
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Chapter 7

Discussion, Extensions and
Future Work

We introduced MTGs and notions of NE pertaining to them, and showed that deciding
whether an MTG admits either notion is decidable (in 2-EXPTIME for CNE and in
EXPTIME for GNE). We have explored the relationships and properties of these no-
tions of NE. In the solution for the CNE existence problem we showed a novel technique
of reducing the problem to a three player partial information game. This shows that
MTGs can be seen as a restricted form of partial information games that might be
more useful for modelling systems with this restricted form of partial information. We

now turn to explore several extensions, and remark about future research directions.

Social optimum A standard solution concept for concurrent games, apart from NE,
is social optimum, namely what is the maximum welfare the players can obtain by
cooperating. Since in MTGs the winning sets of topologies may be incomparable, we
formulate this as follows: given sets (7},)pepia, is there a strategy profile o such that
WinTopg (o) = T}, for every p € Pla?

Fortunately, the techniques we developed enable us to readily solve this problem.
Indeed, we can modify the reduction used to decide the existence of GNE (Chapter 5)
so that Adam chooses a player and a topology, but does not attempt to deviate and
has no further effect on the game. Intuitively, Adam “challenges” Eve to show that the
winning topologies for the players are exactly the intended ones. The complexity of
this approach remains EXPTIME.

Lower bounds As discussed in Remark 5, we do not provide lower bounds for our
results. Trivial lower bounds on the existence of CNE and GNE can be obtained from
those of NE existence in concurrent games, namely PllTIP—hardness [BBM15]. This,
however, is unlikely to be tight. A central open challenge is to determine the exact
complexity of CNE and GNE existence in MTGs.

33



Additional notions of equilibria The notions we propose, namely CNE and GNE,
lie on two extremities: in the conservative setting a deviation is very strict, and in the
greedy setting it is very lax. Generally, one can obtain a notion of equilibrium using
any binary relation on 27P, which describes what the beneficial deviations are for each
player. Moreover, different players can have different relations.

Of particular interest is a quantitative notion of NE, whereby a player deviates if
she can increase the number of her winning topologies. This notion is fundamentally
different from CNE and GNE, as it is not based on set containment, which is key to

the correctness of our approach.

Succinct representation of topologies A central motivation for MTGs, demon-
strated in Example 1.0.1 and in Section 3.1 concerns process symmetry. There, from
a game with k players, we construct an MTG with k! topologies. However, these
topologies can be succinctly represented by computing them on-the-fly. An interesting
direction for future work is to determine whether we can devise a symbolic approach

that is able to handle such MTGs without incurring an exponential blowup.

Logic for partial information games In Chapter 6 we showed that logic for partial
information games [BMM™21; FS10; Maul4] can be used for solving the GNE and CNE
existence problems. It turns out, while this approach can be described with a more
straightforward formula than our solution, the complexity upper bounds it gives are
3-EXPTIME for both problems. Moreover, writing the formula essentially requires an
understanding of the approach we take in the paper. It remains an open question if it
is possible to improve this upper bound using a more elaborate analysis. This approach
might be more easily extended to other notions of NE, utilizing the expressivity of the

logic.

Combinatorial topology Combinatorial topology is a useful tool for reasoning
about game theoretic concepts and distributed computing [RR22]. A possible future
research direction would be to investigate MTGs through the lens of combinatorial

topology and to see if it offers interesting insights about the model.

34



Bibliography

[AAK15]

[AGMO02]

[Alm20]

[BBM15]

[BFH11]

[BMM*21]

[BMV17]

[Bok18]

[BPRS17]

[CD10]

Shaull Almagor, Guy Avni, and Orna Kupferman. Repairing multi-player
games. In 26th International Conference on Concurrency Theory (CON-
CUR 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally
anonymous asynchronous shared memory systems. Information and Com-
putation, 173(2):162-183, 2002.

Shaull Almagor. Process symmetry in probabilistic transducers. In 40th
TARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, 2020.

Patricia P Bouyer, Romain Brenguier, and Nicolas N Markey. Pure nash

equilibria in concurrent games. Logical methods in computer science, 2015.

Felix Brandt, Felix Fischer, and Markus Holzer. Equilibria of graphical
games with symmetries. Theoretical Computer Science, 412(8-10):675—
685, 2011.

Raphaél Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and
Moshe Y Vardi. Strategy logic with imperfect information. ACM Trans-
actions on Computational Logic (TOCL), 22(1):1-51, 2021.

Patricia Bouyer, Nicolas Markey, and Steen Vester. Nash equilibria in
symmetric graph games with partial observation. Information and Com-
putation, 254:238-258, 2017.

Udi Boker. Why these automata types? In LPAR, volume 18, pages 143—
163, 2018.

Romain Brenguier, Arno Pauly, Jean-Frangois Raskin, and Ocan Sankur.
Admissibility in games with imperfect information. In CONCUR 2017-
28th International Conference on Concurrency Theory, volume 85, pages 2—
1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Krishnendu Chatterjee and Laurent Doyen. The complexity of partial-
observation parity games. In International Conference on Logic for Pro-

gramming Artificial Intelligence and Reasoning, pages 1-14. Springer, 2010.

35



[CD14] Krishnendu Chatterjee and Laurent Doyen. Games with a weak adversary.
In International Colloguium on Automata, Languages, and Programming,
pages 110-121. Springer, 2014.

[CEFJ96] Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha.
Exploiting symmetry in temporal logic model checking. Formal methods
in system design, 9(1):77-104, 1996.

[CHP10] Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Strategy
logic. Information and Computation, 208(6):677-693, 2010.

[DDG'10]  Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-Francois Raskin,
and Szymon Torunczyk. Energy and mean-payoff games with imperfect in-
formation. In International Workshop on Computer Science Logic, pages 260—
274. Springer, 2010.

[DHKO07] Luca De Alfaro, Thomas A Henzinger, and Orna Kupferman. Concurrent
reachability games. Theoretical computer science, 386(3):188-217, 2007.

[DPO7] Constantinos Daskalakis and Christos Papadimitriou. Computing equilib-
ria in anonymous games. In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07), pages 83-93. IEEE, 2007.

[ES96] E Allen Emerson and A Prasad Sistla. Symmetry and model checking.
Formal methods in system design, 9(1):105-131, 1996.

[FGR18] Emmanuel Filiot, Raffaella Gentilini, and Jean-Francois Raskin. Rational
synthesis under imperfect information. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 422-431,
2018.

[FS10] Bernd Finkbeiner and Sven Schewe. Coordination logic. In International

Workshop on Computer Science Logic, pages 305-319. Springer, 2010.

[GROT] Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-
memory computing. Distributed Computing, 20(3):165-177, 2007.

[GTO07] Fabiola Greve and Sébastien Tixeuil. Knowledge connectivity vs. syn-
chrony requirements for fault-tolerant agreement in unknown networks.
In 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN’07), pages 82-91. IEEE, 2007.

[Ham13] Nicholas Ham. Notions of anonymity, fairness and symmetry for finite

strategic-form games. arXiv preprint arXiv:1311.4766, 2013.
[ID93] C Norris Ip and David L Dill. Better verification through symmetry.

In Computer Hardware Description Languages and their Applications,
pages 97-111. Elsevier, 1993.

36



[LNRS16]

[Maul4]

[NRTV07]

[RHDCO07]

[RR22]

[Stell]

[TV19]

[UW10]

[Ves12]

Anthony W Lin, Truong Khanh Nguyen, Philipp Riimmer, and Jun Sun.
Regular symmetry patterns. In International Conference on Verification,
Model Checking, and Abstract Interpretation, pages 455-475. Springer,
2016.

Bastien Maubert. Logical foundations of games with imperfect informa-

tion: uniform strategies. PhD thesis, Université Rennes 1, 2014.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, edi-
tors. Algorithmic Game Theory. Cambridge University Press, 2007. URL:
https://doi.org/10.1017/CB09780511800481.

Jean-Francois Raskin, Thomas A Henzinger, Laurent Doyen, and Krish-
nendu Chatterjee. Algorithms for omega-regular games with imperfect

information. Logical Methods in Computer Science, 3, 2007.

Sergio Rajsbaum and Armajac Raventés-Pujol. A distributed combinato-
rial topology approach to arrow’s impossibility theorem. In Proceedings
of the 2022 ACM Symposium on Principles of Distributed Computing,
pages 471-481, 2022.

Noah Daniel Stein. Ezchangeable equilibria. PhD thesis, Massachusetts
Institute of Technology, 2011.

Fernando A Tohmé and Ignacio D Viglizzo. Structural relations of sym-
metry among players in strategic games. International Journal of General
Systems, 48(4):443-461, 2019.

M Ummels and DK Wojtczak. The complexity of nash equilibria in stochas-
tic multiplayer games. Logical Methods in Computer Science, 2010.

Steen Vester. Symmetric Nash Equilibria. PhD thesis, Master’s thesis,
ENS Cachan, 2012.

37


https://doi.org/10.1017/CBO9780511800481




229010 ,NOY NMHVIVONNN NVON NIPNYY >TD1 1AV JTHN YN) DPYN-"rwy NN NN N2
SV NV MNON ONMA X 7POD >T DY NIANND NN T9YD N1 NN N2 NNNX NNV NN»PY
ANV OPYN-11»Y DY 09 NIPN XIN YTHN DPYN-"1YY DWUNd JWR) DPpYN-11red 1050 MITINN
PN DNTPINON .DPNNNV-1170 DPNYNIT DN IPYN-11Y NNONND DNNINON O INNND DN
- DD DYYAPN DPNYNI DPYN-11PY NNONND DIPINDNN 0022 TMYN YN DY DODIIN
NID )THN DPYN-11Y NINONND DNINOND LINKR PRYNRI DNXIN NVIVON NRINND 1°YaN NN
TPNYI NNXIN NNDOIVON NN PYIAN DY iP8PITI DY THN0M ,11P0Iyn 19T NP0 Hya
NP HY2 NI JINY DPYN-11PY NNONND OMINOND .DNIPNY Y DY NIPON-NYT PRwna
PRYNI NIPNYY NNXIN MIVIVOR NRINND 7PYAN DY PNPITI DY THN0M ,ND190-73y1n ot
N20D OH Q0NN PNV DTN O DNIPNYN TAN TUND ,DIPNY NIVIDY DY TPPON-NyT
NIPNA NYID KD Pya NN ONDPNY IVIZY OY DPPON-NYT PRYNI NNNIN IVIVON NNONND

O YA PIANSY DIPINOR O»P ,NNMPN NHY 1INV MNNDN MNIN NNN TN 995N

ii



Sl

DMIVYPNNN 022259 990NN MADNNN MOIYN N TNID DVNYN DIPNY- TN O»aAPN DPNYN
LNONTO L TPDINOIN NNND MOONN D3P NI OWN NIVHN 2207 D30 AWND VN DY THN
5N 0N DNV DDTN .IT NDN PHYHN MYNNINI DN XMPY PADNND Y MDY D110 1)
DY MMPDY ,MIMPY INPY NNIS PPN MY IWARD NN DDPNRD NN 1DV NI0NNIY ,NOIYNN
Y NP2 NP AT DNYY DAIWNN NN YN NN 0NV NIVNNY MY OWNNYNN
NPIVIVOR 229179 NI YNNI YPYN-n1y it 0N DPRYND Y07TI0DN PINSN NN YR Dpwn
95,9795 )5Y MMOIVONNIN MODD PNV PR IPNY GRD 12V 729” (1PNY DY iMIVIVON)
NTIAYa D20 MND IN DTN NMIND NIV IRNIND 222N )10 NNV IIVIVONIN 1YY NPOD
VY9 NINYN JPNY 9D DY NIVNN BN ,DIAYNI-NININ PNYI ONIN DY DPHYNI PIoY)
-NIN PN NN DY DIPAY-2190 07PN DPNYNI YR YpYn-nry .0»pY 1pnvin Syv
PAYN JN1NA ,DOYANY RY¥N ,PRYNND 28N DY NON YN DIPHYY DN DAIPPRIA IPNI OO
DIPIMON D»P ,HIDN DININAY ,NYIOND NN’ ,PHYNI YN) JpUn-nmy 0»p OND 9%2pn

IPVNN-PY NSNS (PONIMIPG) Dy

900 NOIYNN AN ON ,ANNTY ,NOIYNN ANND NN ARDN NTIND NI KD D27 ,0%27 DIIPPRa
YT DY NOTINND D200 P2 MPSPRIVIRD DT NIPNI .YIN 2950 DXNYN DINY D709 DINYN
TPPON-NYT PNYNI YN DPYN-11Y D) ONND WP IYSN N0 .DPPON-NYT DY DPNYN
NIIWYNNVY ToN Ny D270 DY NYTN-N ,0°27 DIPNRA NN OY Ny Id KXY dya N YD
NN MXID 915 2090 ,NF NIPNA ,DXONNN 93 NYN IPRY PTINY AN TOIN 935 NO»wn

A9V MNYHN HY NYOVNN iPIN DN PPTI YTY PN TN NRIN 19N NOIYNN NN

DPNYN - 7NNV 22190 DXPNYN” RIPIN WTN DTN MYNNINI AT 1PYI DX990N DX T NTaya
PYTA NYTO 20N PRYNN NN DPNYN DIPNYRIY 1O NPIYAN NPNNINV 1901 DY DY22APNn
NNN DVIVON NNAD OIPNVYA DY NPNINV-NITN PRYNI NI PHYNN PNNY NI
INSIN NIV DIPAYN NAY NMVIVON 239179 DI, 7o KXY, NPNNMVN DY DMN YHIVYNY
DT D09 DIPHY-N1I PPN PRYNI DTN ANNIND T,V YO0 pRvnn Y Nnv
,DPNNMV-22170 DPAYN NAY TTNN YR DPYN-11Y 12 19N MNNNN Y8 DIPRD DYNT 1
NNONY NAY 0»9APN DPNYNI YR DPYN-nrY NNONND OMINOND WInNvno NIPRD NN

DPNINY 21N DPNYNI YN DPYN-n»Y

MY DM,V DN NN YN DPAYN NAY YN HPYNR-11Y PTnD 1Y ORI DN
921N POONY MNINI P NOY MIVLIVORNN NVDN NIPNY 12,11V YN TPYN-11PY MNIVON
NNV NI TDANY 2HAN ,IPNONN MIVIVONN DY NPDIN NN N2 NPNNNLA PN






AVNNN Y TND NP ,INNONR DIRY IT SY IN»NINA YA IPNNN

NY-2AN52) 0052 IPNNY POMWYI 12NNN NND DXIRNNDD NN Mt NN MNHIND N PN
NP0 NP2 NPIDTYN DIPMINDI YN 12NN DY 0NOVPITH IPNN NAPN TONNa

Shaull Almagor and Shai Guendelman. Concurrent games with multiple topologies. In 33rd

International Conference on Concurrency Theory, 2022.

MmN

TONN2 VY APWNNPNR NNDA0N RN DY ,INVNOR DIRY AT POV IMIND MTMIND NN N
MDD DY NTayn

I IPNN PN DY 1PIDVY NMON NTIN NION






NPNIINV N DIPHYN

PPN DY NN

ANINN NOAPO MYWITN DY HPON N owd
AWNNN YN DYTNY T0DIN

N-ParP )

DN MONOV NON — POV VIDD YN
2022 12197 nanN Y'awn »vn






NPNIINV N DIPHYN

N-ParP )



	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	3 Multi-Topology Games
	3.1 Process Symmetry in Concurrent Games
	3.2 Solution Concepts
	3.3 Properties of CNE and GNE

	4 Existence of Conservative NE is Decidable
	4.1 Partial-Information Games
	4.2 Overview of the Reduction
	4.3 Reduction to Partial Information Game

	5 Existence of Greedy NE is Decidable
	5.1 Reduction to Partial Information Game

	6 Strategy Logic with Imperfect Information
	6.1 Overview of SLii
	6.2 MTG to CGSii
	6.3 Expressing GNE Existence Problem with SLii
	6.4 Expressing CNE Existence Problem with SLii

	7 Discussion, Extensions and Future Work
	Bibliography
	Hebrew Abstract

