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1 Motivation

In this course, we will study the theoretical foundations of formal methods: automata, logic, and games.

1.1 Politically Correct Motivation

Formal methods in CS aim to give mathematical and precise models of systems and specification, so that
we can reason about them automatically, without relying on e.g., human testing, and without sacrificing
correctness.

What kinds of systems and specifications do we allow? This is a huge question, and we’ll attempt
to see some answers along the way. One immediate thing to keep in mind, is that if we allow systems
or specifications that are too “rich”, then things become undecidable, and we lose the algorithmic mo-
tivation. For example, if we model systems using Turing machines, and we allow the specification “the
machine halts”, then the reasoning reduces to the halting problem.

Let’s start with an example of the type of reasoning we use.

Example 1.1. Consider an elevator working in an 8 floor building. The elevator can be in any of the 8
floors at any given time. Inside, the elevator has a button for each floor, and on each floor there is a call
button.

We want to (formally) describe the operation of the elevator. That is, the algorithm, or control, that
dictates its behaviour. Let’s start by describing the state of the elevator at a certain point. We represent
it using a vector in S = {1, . . . , 8}× {0, 1}8, representing which floor the elevator is on, and which floors
have been called.

LIE ALERT!
In the above we assume that the elevator state only relies on the current floor and the pressed floors,

and does not store any additional information. But why should this be the case? It could well be that
we want to remember whether the elevator was recently going up or down, etc.

At each time step, the algorithm reads which floors are being called, and then moves the elevator
to some floor (not necessarily one up or one down, it may send it without stopping to a certain floor).
Thus, the inputs for the system are vectors in I = {0, 1}8.

We are now ready to model the system: we build a sort of automaton, whose states are S and its
alphabet is the set of inputs I. Thus, for example, if we have the transition

δ((3, (0, 0, 0, 1, 0, 0, 0, 1)), (1, 0, 0, 0, 0, 0, 0, 0)) = (4, (1, 0, 0, 0, 0, 0, 0, 1))

it means that if the elevator was on floor 3, and floors 4 and 8 were requested, and then a new request for
floor 1 arrived, the control would take the elevator to floor 4, erase the 4 request, and put in a request
for floor 1.

LIE ALERT!
We now assume that the algorithm for the elevator only relies on the state of the elevator, and nothing

more. As we will see, there is a reason to assume something like that (namely the existence of memoryless
strategies in parity games), but we’re getting ahead of ourselves.

So now we have a full elevator control. What do we do with it? Well, we want to know if it’s
correct. To do that, we need to formalize specifications, and then check whether the control satisfies the
specification. This is called model checking.

What kinds of specifications would we like to reason about? Here are some examples.
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� Whenever floor i is pressed, the elevator eventually reaches it.

� If floor i < j are pressed, and the elevator is at floor k < i, then it will go to floor i before floor j.

� Suppose an important person lives at floor 8. We can require that whenever floor 8 is called, the
elevator immediately goes there.

In this course we will deal with questions such as:

� How can we formalize such specifications?

� Can we algorithmically check whether they hold?

� Can we algorithmically build a controller that automatically satisfies all the specifications?

4

1.2 Actual Motivation

Automata are perhaps the simplest models of computation one can think of. Nonetheless, they posses
two very appealing properties: they are relatively tractable to reason about, and yet they are powerful
enough to model many computing systems, or abstractions thereof.

An even more appealing property of automata is that they are fun to study: their underlying mathe-
matical foundation is extremely poor (in that there is no rich theory underneath them, such as calculus,
probability theory, group theory, etc.), and yet they give rise to very intricate problems. Since there are
not many mathematical foundations to use, all we can use is our brain. Hence – fun!

2 Languages and ω-Languages

Let Σ be a finite set, which we call an alphabet. We refer to the elements of Σ as letters.alphabet

letters

Finite words We define

Σ? =

∞⋃
n=0

Σn

The elements of Σ? are sequences of any finite length of letters from Σ, and we refer to those aswords words.
ε is called the empty word. For convenience, we don’t write words as (a, b, b, b, a), but rather as abbba.

Alanguage language over the alphabet Σ is a set L ⊆ Σ?. That is, a set of words.

Infinite words Recall that ω is the first infinite ordinal (sometimes identified with the set of natural
numbers N). Then, Σω is the set of infinite words over Σ. The elements of Σω are calledω-words ω-words, or
just words, if the context is clear (you can think of a word as a function w : N → Σ, if you want).
Anω-language ω-language is a subset L ⊆ Σω. Again, when the context is clear we will simply refer to them as
languages.

For a ∗-language L ⊆ Σ? and an ω-language K ⊆ Σω, let Lω = {v1v2 . . . : ∀i ∈ N vi ∈ L}Lω and
L ·K = {v · w : v ∈ L and w ∈ K}.L ·K

For a word w ∈ Σω, we often denote its letters as w = w0w1 . . ..

3 Büchi Automata

Our goal is to be able to reason about ω-languages. To do so, we need a suitable computational model
– one that defines certain ω-languages. For our purposes, the model of choice is an adaptation of the
finite automata model for finite words. Before defining our model of automata, let’s recall the model of
(nondeterministic) automata over finite words:

Definition 3.1.NFA A nondeterministic finite automaton (NFA) is a tuple A = 〈Q,Σ, Q0, δ, F 〉 where

� Q is a finite set of states
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� Σ is a finite alphabet

� Q0 is a set of initial states

� δ : Q× Σ→ 2Q is a transition function

� F ⊆ Q is a set of accepting states

We will not recap the semantics of NFAs, but recall that an NFA accepts a word w ∈ Σ? if it has a
run on w that starts in Q0 and ends in F .

Remark 3.2. Perhaps you have seen the definition of NFA with a transition relation R ⊆ Q × Σ × Q
instead of δ : Q×Σ→ 2Q. They are of course interchangeable, and if you’re more comfortable with one
over the other - by all means use whichever. 4

Example 3.3. Consider the DFA in Figure 1. It’s language is {w ∈ {a, b}∗ : w ends with a}.

q0 q1
a

b

b a

Figure 1: A deterministic automaton

4

3.1 Büchi Automata

When we want to define a model for automata that handle ω-words, we clearly cannot use the phrase
“ends in F”, as a run does not end. Thus, we need to propose some other acceptance condition. As we
shall see, there are several interesting acceptance conditions. The most well-studied is called the Büchi
acceptance condition, named after the Swiss mathematician Richard Büchi, who proposed and studied
them in the 60’s [2].

Intuitively, the Büchi acceptance condition dictates that a run is accepting if it visits an accepting
state infinitely often.

Example 3.4. Consider the automaton in Figure 1 again, this time treated as a Büchi automaton. It’s
language in this case is {w ∈ {a, b}ω : w has infinitely many a’s}. 4

We now turn to formally define Büchi automata.

Definition 3.5.NBW A nondeterministic Büchi automaton over words (NBW) is a tuple A = 〈Q,Σ, Q0, δ, α〉
where

� Q is a finite set of states

� Σ is a finite alphabet

� Q0 is a set of initial states

� δ : Q× Σ→ 2Q is a transition function

� α ⊆ Q is a set of accepting states

As you can see, the syntax of an NBW is identical to that of an NFA. In particular, in a
deterministic

deterministic
Büchi automaton (DBW), we have a deterministic transition function (i.e., |δ(q, σ)| = 1 for all q, σ) and
a single initial state q0.

The difference between NBWs and NFAs is of course in the semantics. Intuitively, an NBW accepts
a word w ∈ Σω if it has a run on w that visits α infinitely often. We now formalize this.

Let w = w0w1 · · · ∈ Σω. Arun run of A on w is a sequence ρ = q0, q1, . . . ∈ Qω such that:
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� q0 ∈ Q0,

� for every i ≥ 0, qi+1 ∈ δ(qi, wi).

That is, a run of A on w is an infinite sequence of states that progresses according to the transition
function.

For a run ρ = q0, q1, . . ., let inf(ρ) = {q : ∀i ∃j ≥ i : qj = q}.inf That is, inf(ρ) is the set of states that
repeat infinitely often in ρ. Observe that since Q is finite, we have that inf(ρ) 6= ∅.

In the Büchi acceptance condition, we say that the run ρ is acceptingaccepting

run

if inf(ρ) ∩ α 6= ∅. That is, if ρ
visits α infinitely often.

We say that A accepts w if A has an accepting run on w. Finally, we define thelanguage language of A to be
L(A) = {w ∈ Σω : A accepts w}.

3.2 Closure Properties (excluding complementation)

We now turn to study closure properties of NBWs. Perhaps the simplest closure property for nondeter-
ministic automata is union:

Theorem 3.6. Let A,B be two NBWs, then there exists an NBW C such that L(C) = L(A) ∪ L(B).

Proof sketch. Basically, put the NBWs “side by side”.

The next natural property to reason about is intersection. One way to prove closure under inter-
section is to prove closure under complementation, and then use de-Morgan rules. As we shall see,
complementation poses a significant challenge, and therefore we tackle intersection directly first.

For NFAs, closure under intersection is typically shown using the product construction. We start by
showing that naively, this does not work for NBWs.

Example 3.7. Consider the NBW A in Figure 1, and let B be a similar NBW with q0 accepting instead
of q1.

What are L(A) and L(B)? What happens when we take their product construction? 4

The problem demonstrated in Example 3.7 is that the two automata may visit their accepting states
in different times, and we need some way to keep track of that. We do this using an “indexed” product
construction.

Theorem 3.8. Let A,B be two NBWs, then there exists an NBW C such that L(C) = L(A) ∩ L(B).

Proof. Let A = 〈Q1,Σ, Q1
0, δ

1, α1〉 and B = 〈Q2,Σ, Q2
0, δ

2, α2〉, we construct a NBW C = 〈Q1 × Q2 ×
{0, 1},Σ, Q1

0 ×Q2
0 × {0}, δ′, α1 ×Q2 × {0}〉, where the transition function is as follows. Let q1 ∈ Q1 and

q2 ∈ Q2

δ((q1, q2, b), σ) =


δ(q1, σ)× δ(q2, σ)× {0} b = 0 ∧ q1 /∈ α1

δ(q1, σ)× δ(q2, σ)× {1} b = 0 ∧ q1 ∈ α1

δ(q1, σ)× δ(q2, σ)× {1} b = 1 ∧ q2 /∈ α2

δ(q1, σ)× δ(q2, σ)× {0} b = 1 ∧ q2 ∈ α2

Intuitively, we hold two copies of the product automaton, and we jump between them whenever we
get to an accepting state of the corresponding automaton.

To prove correctness, consider a word w ∈ Σω and runs of A and B on w. Observe that by induction,
it is easy to prove that there is a run of C on w that is in state (q1, q2, b) after reading a prefix x of w iff
the respective runs of A and B are in states q1 and q2 after reading x.

Next, observe that C stays in copy 0 until α1 is seen in the first component, and moves to copy 1
otherwise, and similarly for copy 1 and α2. It thus follows that there exist accepting runs of both A and
B on w iff there exist such runs where both A and B visit their accepting states infinitely often, and this
happens iff the “product run” in C visits α1 ×Q2 × {0} infinitely often.

Thus, C accepts w iff both A and B accept w, and we are done.

The next properties are somewhat more esoteric, but will turn out to be important for both comple-
mentation (Section 3.4) and for ω-regular expressions (which you will see in Exercise 1).
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Theorem 3.9. Let A be an NFA, then there exists an NBW B such that L(B) = L(A)ω.

Proof. The intuitive idea is that whenever A reaches an accepting state, B can “reset” the run back to
Q0, in which case we also mark a visit to an accepting state. There is a small technical nuisance here,
which is that the “acceptance” mark should conceptually be on a transition, instead of a state. Since
this is not allowed in our model, we need a small workaround, namely copying the initial states (or the
accepting states).

Formally, we proceed as follows. Let A = 〈Q,Σ, δ, Q0, F 〉. We define the NBW B = 〈Q′,Σ, δ′, Q0, α〉
where:

� Q′ = Q ∪ (Q0 × {1}) where Q0 × {1} is a fresh copy of Q0.

� α = Q0 × {1} (the new copy of Q0 are the accepting states).

� δ′ is defined as follows: for every q ∈ Q and σ ∈ Σ, let S = δ(q, σ), then

δ′(q, σ) =

{
S S ∩ F = ∅
S ∪ (Q0 × {1}) S ∩ F 6= ∅

and for every q0 ∈ Q0 we have δ′((q0, 1), σ) = δ(q0, σ).

Thus, B acts similarly to A, but whenever it is possible to reach an accepting state, B sends a run
to start again from Q0, and marks a visit to an accepting state. Thus, B accepts a word w iff w
can be written as u1 · u2 · · · where ui ∈ L(A) for every i.

Theorem 3.10. Let A be an NFA and let B be an NBW, then there exists an NBW C such that
L(C) = L(A) · L(B).

Proof Sketch. A bit similarly to Theorem 3.9, the idea is to add a transition from the accepting states
of A to the initial states of B (but here we don’t need to duplicate any state).

We conclude this section by giving a name for the class of languages defined by regular expressions:

Definition 3.11. A language L ⊆ Σω isω-regular ω-regular if it is recognizable by an NBW.

3.3 Decision Problems for NBWs (part I)

In this section we study decision problems for NBWs. The first problem we consider is emptiness.
NBW Emptiness:

Given: NBW A.

Question: Is L(A) = ∅ ?

Theorem 3.12. NBW emptiness is NL-Complete.

Proof. We’ll start with the upper bound. Let A = 〈Q,Σ, δ, Q0, α〉. How can we decide whether A accepts
some word? Well, it’s clearly enough to determine whether A has some accepting run. Now, let’s observe
what an accepting run looks like: it first needs to reach α from Q0, and then needs to reach α infinitely
often. Since α is finite, we have that an accepting run in fact reaches some state q ∈ α infinitely often.

Thus, it is enough to decide the following: are there states q0 ∈ Q0 and q ∈ α such that q is reachable
(in the underlying graph of A) from q0, and from itself?

We now add another simple observation: if a state q is reachable from another state s, then it is also
reachable from s using a simple path (i.e., without loops).

Finally, note that the length of a simple path is at most |Q|.
So an algorithm for deciding non-emptiness in NL is the following: first, nondeterministically “guess”

q0 ∈ Q0 and q ∈ α. Then, guess “step by step” paths of length at most |Q| from q0 to q and then from
q to q. If such paths are found, the language is non-empty, so accept.

Implementing this in logarithmic space is standard, by keeping on the tape only the current states,
and the guesses for q0 and q, as well as a step counter with dlog |Q|e bits.
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We now turn to show hardness. The canonical NL-Complete problem is directed graph connectivity:

STCONN = {〈G, s, t〉 : G = (V,E) is a directed graph s, t ∈ V and there is a path from s to t in G}

A reduction from STCONN to NBW non-emptiness is almost trivial: given 〈G, s, t〉 where G = 〈V,E〉,
we define an NBW B = 〈Q,Σ, δ, Q0, α〉 where Q = V , Σ = {a} is singleton. Q0 = {s}, α = {t}, and δ
is induced by the edges, with the addition of self-loops: for every v ∈ V , δ(v, a) = {u ∈ V : (v, u) ∈
E} ∪ {v}.

It is easy to see that the reduction can be implemented in logspace.
We now prove correctness. If there is a path from s to t in G, then t is reachable from s in B, and it

is reachable from itself via the self loop, so B accepts the word aω, and its language is non-empty.
Conversely, if L(B) 6= ∅, then the single accepting state t must be reachable from the single initial

state s, so t is reachable from s also in G, and we are done.
Notice that since NL = coNL (by Immerman’s theorem), then NBW emptiness is also NL-Complete.

There are two other natural decision problems for NBWs, namely universality and containment :
NBW Universality:

Given: NBW A.

Question: Is L(A) = Σω ?

NBW Containment:
Given: NBWs A,B.

Question: Is L(A) ⊆ L(B) ?

For NFAs, solving universality and containment is done using complementation. Since we do not
know whether Büchi automata can be complemented yet, both NBW universality and containment seem
a bit out of reach at the moment.

3.4 Complementation of NBWs

How can we complement NBWs? Let’s try to draw some intuition from the case of finite words. In order
to complement an NFA, we determinize it to a DFA, and then complement by flipping the accepting
states.

Unfortunately, this approach breaks down for NBWs (in both steps), as we shall now show.
We start by showing that NBWs are not determinizable.

Theorem 3.13 (Landweber ’69 [12]). There exists an ω-language L that is recognizable by an NBW,
but not by a DBW.

Proof. Consider the language L = {w ∈ {0, 1}ω : w has finitely many 1’s}. Observe that L is recogniz-
able by the NBW in Figure 2.

q0 q1

0, 1

0, 1 0

Figure 2: NBW for “finitely many 1’s.”

We claim that L cannot be recognized by a DBW. To this end, assume by way of contradiction that
A = 〈Q, {0, 1}, δ, α〉 is a DBW with L(A) = L, and let n = |Q|.

We’re going to derive a contradiction using a sort of pumping argument, as follows.
Consider the word 0ω ∈ L. The (unique) run of A on it is accepting, and thus visits α infinitely

often. Let m1 be an index such that the run of A on 0m1 reaches α.
Now consider the word 0m110ω ∈ L. Following the same reasoning, we can find m2 such that the run

of A on 0m110m2 reaches α.
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Proceeding in this fashion (or, formally, by induction) we can construct a sequence m1,m2,m3, . . . ...
such that the run of A on 0m110m21 · · · 10mk reaches α for every k. Note that all the runs we considered
are prefixes of each other, and that after every prefix of the form above, the run reaches α.

We can now complete the proof in two ways:
The “mathematically-confident” approach is to consider the infinite word 0m110m21 · · · obtained from

our construction, and observe that the run of A on it visits α infinitely often, which is a contradiction.
The “safe” approach, for those who shy away from infinite constructions (as well they should), is

the following: recall that A has n states. Consider the first n + 1 prefixes 0m110m21 · · · 10mk , k ∈
{1, . . . , n + 1}. For every k, the run of A on the prefix ends in α. Thus, there exist k1 < k2 such that
both 0m110m21 · · · 10mk1 and 0m110m21 · · · 10mk2 end in the same (accepting) state q.

We can now “pump” this accepting cycle infinitely. That is, the run of A on the word

0m110m21 · · · 10mk1 (10mk1+1 · · · 10mk2−1)ω

reaches and stays in an accepting cycle. But this word has infinitely many 1’s, so we have reached a
contradiction.

In addition, it is not hard to see that swapping the accepting and non-accepting states in a DBW
does not result in the complement of its language.

As it turns out, complementing NBWs is highly nontrivial. Büchi was the first to give a proof that
they are closed under complementation [2]. Our proof below follows that of Thomas [27]. We start with
some definitions.

Consider an NBW A = 〈Q,Σ, δ, Q0, α〉. Let w ∈ Σ? be a finite word, and consider two states q, q′ ∈ Q.
There are three possible “fates” for the (partial) runs of A on w:

1. There is a run of A on w from q to q′ that does not go through α (denoted q
w−→ q′ ).

2. There is a run of A on w from q to q′ that passes through α (denoted q
w−→α q

′).

3. There is no run of A on w from q to q′ (denoted q
w

6−→ q′).

Note that cases 1 and 2 are not mutually exclusive.1

We now define thetype type of w to be an edge-colored bipartite directed (from left to right) graph whose
vertices are two copies of Q, with the following edges: for vertices q, q′ on the left and right, respectively,
there is a red edge (q, q′) if q

w−→ q′, there is a blue edge (q, q′) if q
w−→α q

′, and otherwise there is no
edge from q to q′.

Example 3.14. Consider the NBW in Figure 3. Let’s examine the type of the word aba in this NBW.

q0 q1 q2
b

a

a

b

a, b a

Figure 3: An NBW.

To do so, we can first examine the type of each letter, as depicted in Figure 4(a), and then concatenate
the graphs, to get the resulting type in Figure 4(b).

4

We now make a simple observation:

Observation 3.15. There are finitely many different types for a given NBW A.

1We could have defined condition 1 to also require that there is no run that goes through α. This makes some parts
cleaner and some parts messier, but does not effect the general lines of the proof.
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q0

q1

q2

q0

q1

q2

q0

q1

q2

q0

q1

q2

a b a
(a) The types of a, b, a, concatenated

q0

q1

q2

q0

q1

q2

aba
(b) The type of aba

Figure 4: Finding the type of aba.

Given a finite sequence of types, we can concatenate them in the natural way to obtain a type graph.
Similarly, for an infinite word w, decomposed as w = u0u1 · · ·, itstype graph type graph is the infinite graph obtained
by concatenating the types of the sequence u0, u1, . . .. Note that for infinite concatenations, the type
graph is no longer bipartite, but rather consists of an infinite concatenation of bipartite graphs.

We now formalize how type graphs are connected to membership in the language.

Lemma 3.16. Consider a word w ∈ Σ∗ and a decomposition w = u0u1 · · · with ui ∈ Σ∗ for all i ≥ 0.
Let τi be the type of ui, and τ = τ0τ1 · · · the corresponding type graph.

We have that w ∈ L(A) iff τ does not have a one-way path that begins in an initial state and passes
infinitely often through blue edges.

Proof. This lemma is almost trivial, and is more of an observation.
Assume the right-hand condition holds, and consider a run of A on w. This run induces a one-way

path through the graph τ from an initial state, and therefore does not pass through infinitely many blue
edges. Thus, this run only passes through finitely many accepting state, so it is not accepting. Since
this holds for every run, we have w /∈ L(A).

Conversely, assume w /∈ L(A), and consider an infinite path from an initial state in τ . Such a path
again induces a run (actually, several runs) of A on w, and the corresponding runs are not accepting,
and therefore visit α only finitely often. Thus, this path has only finitely many blue edges.

Observe that in particular, the lemma shows that the condition on the type graph holds regardless
of the decomposition w = u0u1 · · · , which naturally makes sense.

The next step in the proof is to invoke Ramsey theory. For a set S, write (S)n = {S′ ⊆ S : |S′| = n}
(i.e. the set of subsets of S of size n). We will use the following theorem:

Theorem 3.17 (Ramsey, 1930). Let f : (N)n → {1, . . . k}, then there exists an infinite set S ⊆ N on
which f is homogeneous, i.e., f is constant on (S)n.

We now use Theorem 3.17 to find special “lasso-shaped” type graphs for every word. This observation
is at the heart of Büchi’s work.

Lemma 3.18. For every word w ∈ Σω there exists types τ0, τ such that w can be written as w = u0u1 · · ·
where the type of u0 is τ0, and for every i ≥ 1 the type of ui is τ .

Thus, the type graph of w is τ0τ
ω.

Proof. Let w ∈ Σω, and let T be the (finite) set of types in A. We define a function f : (N)2 → T that
maps a set {i, j} ⊆ N with i < j to the type of the infix wi . . . wj−1.

By Theorem 3.17, there exists an infinite set H = {j1, j2, . . .}, with j1 < j2 < . . . such that f is
homogeneous on H.
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Denote by τ the type such that for all j, j′ ∈ H, f(j, j′) = τ , and denote by τ0 the type of the prefix
w0 · · ·wj1−1.

Set u0 = w0 · · ·wj1−1 and for all i ≥ 1 set ui = wji · · ·wji+1−1, then the condition clearly holds.

Remark 3.19. Note that the proof of Lemma 3.18 shows that in fact, not only does every ui has the
same type τ , but in fact ui ·ui+1 also has the same type. In other words, the type τ is idempotent under
concatenation of types. 4

Now, consider a type τ . We define the language

Lτ = {w ∈ Σ+ : w has type τ}.

Next, let τ0, τ be two types (c.f. Lemma 3.18), we define the language

Lτ0,τ = Lτ0 · Lωτ = {w ∈ Σω : w has a decomposition with types τ0τ
ω}.

We now come to the main characterization of the complement of L(A).

Lemma 3.20. Let B = {(τ0, τ) : Lτ0,τ ∩ L(A) = ∅)}. Then L(A) =
⋃

(τ0,τ)∈B Lτ0,τ .

Proof. One direction is trivial: if w ∈ ⋃(τ0,τ)∈B Lτ0,τ , then w /∈ L(A) (since each set in the union is

disjoint from L(A)).
For the converse, let w /∈ L(A). By Lemma 3.18, there are τ0, τ such that w ∈ Lτ0,τ . We claim that

Lτ0,τ ∩ L(A) = ∅.
Assume by way of contradiction that there exists some w′ ∈ Lτ0,τ ∩ L(A). Then, the type graph

of w′ that corresponds to the decomposition into types τ0τ
ω has a path from an initial state that has

infinitely many blue edges. However, this path also exists in the type graph of w (as it is identical),
which contradicts Lemma 3.18. Thus, we are done.

We are now done giving a characterization of L(A) using languages (defined by types). We now turn
to show that we can actually construct an NBW that corresponds to this characterization. We start by
showing that all the languages defined above are in fact ω-regular (or regular, for finite words).

Proposition 3.21. The language Lτ is ∗-regular, and can be effectively obtained from A.

Proof Sketch. Recall that A = 〈Q,Σ, δ, Q0, α〉. We wish to construct an NFA N for Lτ . The idea is
as follows: when reading a word w ∈ Σ+, N needs to verify that for every pair of states q, q′ ∈ Q, the
runs of A between q and q′ admit edges of the correct color prescribed by τ . Consider such states q, q′.
Suppose that in τ there is a red edge from q to q′, then N must check that there exists a run from q to
q′ that does not go through an accepting state of A. We do this as follows: take a copy of A where q
is the initial state, q′ is the only accepting state, and remove all states in α from Q. The obtained NFA
accepts w iff there exists a run from q to q′ that does not go through an accepting state.

Now, if there is a blue edge from q to q′ in τ , we construct an NFA that comprises two copies of A:
first, we run A from q until an accepting state is seen, and then we continue running in a new copy until
we reach q′. It is not hard to see why this captures a blue edge.

We can then describe the properties “no red edge” and “no blue edge” by complementing as needed.
Finally, we take the conjunction over all q, q′, to obtain the overall NFA.

Exercise 3.22. What is the (worst case) size of N described above?

By the closure of ω-regular languages under concatenation and under ω (Theorems 3.9 and 3.10) we
have that the language

Lτ0,τ = Lτ0 · Lωτ = {w ∈ Σω : w has a decomposition with types τ0τ
ω}

is Büchi recognizable.
Finally, we are ready to show the main theorem.

Theorem 3.23. Let A be an NBW, we can effectively2 compute an NBW B such that L(B) = L(A).
2“Effectively” means that the construction is computable (not to be confused with “efficiently”).
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Figure 5: An NBW for Ln in Theorem 3.26.

Proof. Given A, we start by constructing the NBWs Aτ0,τ for every pair of types τ0, τ of A (using
Proposition 3.21 and Theorems 3.9 and 3.10). Then, for each such NBW, we check whether L(Aτ0,τ ) ∩
L(A) = ∅, using Theorem 3.8, and the non-emptiness algorithm described in Theorem 3.12.

Finally, using Theorem 3.6, we construct an NBW for
⋃

(τ0,τ)∈B Lτ0,τ , which by Lemma 3.20 is exactly

L(A).

Observe that the proof of Theorem 3.23 is constructive – all the steps involve constructions and
algorithms we know how to implement.

Finally, let’s give a bound on the size of the complement of an NBW:

Theorem 3.24. Let A be an NBW with n states, then there exists an NBW A for the complement
language with 2O(n2) states.

Proof. Exercise.

Remark 3.25. The construction in Theorem 3.24 is not optimal. In fact, one can achieve a 2O(n logn)

construction (see e.g., [11]). 4

Theorem 3.24 shows that NBWs are closed under complementation, but gives a horrible blowup in
terms of the size of the resulting complement NBW. A natural question is whether we can do better, or
whether there is a lower bound.

Theorem 3.26 ([17]). There is a family3 of languages L1, L2, . . . such that Ln ⊆ Σωn can be recognized
by an NBW with n+ 1 states, but every NBW for Ln requires at least n! states.

Proof. As with many lower bounds, the proof involves a bit of “magic”. It can be frustrating to read,
though, so for a first reading, I recommend embracing the magic, and following the proof steps without
asking (too much) why and how it works. It just does.

We’ll start by defining the family of languages we work with. For n ∈ N, let Σn = {1, . . . , n,#}.
Consider a word w ∈ Σωn . We associate with w a directed graph Gw = 〈V,E〉 where V = {1, . . . , n} and
(i, j) ∈ E iff ij appears infinitely often in w.

For example, the word 21(123)ω ∈ Σω3 defines a directed triangle, with edges (1, 2), (2, 3), and (3, 1).
Now, we define

Ln = {w ∈ Σωn : Gw contains a cycle}
Isn’t that weird? Remember, it’s magic.

We now present two claims: first, that Ln is recognizable by an n+ 1 state NBW, and second, that
every NBW for Ln has at least n! states. Naturally, we’ll start with the easy part, showing an NBW for
Ln.

Consider the NBW An in Figure 5. Clearly An has n+ 1 states. Now, it is not very difficult to prove
that L(An) = Ln, but we’re not going to do that. The reason is that in order to prove the theorem, it’s
actually enough to define Ln as L(An), and regard the whole graph idea as an intuition, which we do
henceforth.

So all that remains is to prove that any NBW for L(An) has at least n! states. Let Bn be such an
NBW. How shall we get the n! bound? by using permutations, of course. Let π = (π1, . . . , πn) be
a permutation of {1 . . . , n} (i.e., π(i) = πi), and consider the word wπ = (π1 · · ·πn · #)ω. Note that
wπ /∈ Ln. Indeed, in every run of An on w, after every visit to q0, we must either see # (and there are

3If you’re not sure why we need a family, and not a single language, please ponder it, and come see me.
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no runs), or we proceed to the state corresponding to the next letter of the permutation. That is, from
state qi, a transition to q0 can only be taken with letter i, and therefore must be followed by a transition
on letter j, where j “follows” i in π (formally, j = π(π−1(i) + 1)). Therefore, eventually the run reaches
qk for k = π(n), which we cannot leave, since the only occurrences of k in the remainder of the word are
followed by #, and # cannot be read from q0. Thus, wπ ∈ L(Bn).

Now, consider two permutations π 6= τ , and let Sπ and Sτ be the sets of states that Bn visits infinitely
often during some accepting runs rπ and rτ on π and τ , respectively. We claim that Sπ∩Sτ = ∅. Observe
that this would allow us to conclude the claim, since for every permutation we would need at least one
unique state.

Assume by way of contradiction that Sπ ∩Sτ 6= ∅, and let q ∈ Sπ ∩Sτ . Thus, we can find three finite
words h, u, v ∈ (Σn)∗ with the following properties:

� h is a prefix of wπ, with which rπ moves from an initial state to q.

� u is an infix of wπ that contains π, with which rπ moves from q back to q, while visiting an accepting
state of Bn.

� v is an infix of wτ that contains τ , with which rτ moves from q back to q, while visiting an accepting
state of Bn.

Since rπ and rτ are accepting, these words exist. Now, it is easy to see that Bn accepts h(uv)ω. We
show, however, that h(uv)ω ∈ L(An), thus reaching a contradiction.

Write π = (π1, . . . , πn) and τ = (τ1, . . . , τn). Let j be the minimal index such that πj 6= τj . Where
do π and τ send j? They cannot assign it to something that was previously assigned, so there must exist
j < k, l ≤ n (possibly k = l) such that πj = τk and τj = πl (make sure you understand this point, it’s
slightly confusing).

Now, since u contains π and v contains τ , then (uv)ω contains the pairs

πjπj+1, πj+1πj+2, . . . , πl−1πl, πlτj+1︸ ︷︷ ︸
=τjτj+1

τj+1τj+2, . . . τkπj+1︸ ︷︷ ︸
=πjπj+1

and these pairs appear infinitely often. Thus, the graph defined by (uv)ω has a cycle, so An accepts
h(uv)ω, and we are done.

To read more on Büchi complementation, and matching the lower and upper bounds, see [24, 10].
In contrast with NBW complementation, if we merely want to complement a DBW to an NBW,

things are much easier:

Exercise 3.27. Let A be a DBW with n states. Show that there exists an NBW B such that L(B) = A
and B has O(n) states.

3.5 Decision Problems for NBWs (part II)

We are now fully equipped to tackle some decision problems for NBWs. Let’s start with universality.

Theorem 3.28. The universality problem for NBWs is PSPACE-Complete

Proof. The proof has two parts, showing membership in PSPACE, and showing PSPACE hard-
ness. Before proceeding, we recall that by Savitch’s Theorem, we have NPSPACE = PSPACE =
coPSPACE = coNPSPACE. Thus, in order to prove that a problem is in PSPACE, it suffices to
prove that it’s complement is in NPSPACE. Often, this is hugely helpful.

The complement of the universality problem, called the non-universality problem, asks whether
L(A) 6= Σω. We work with non-universality to establish membership in PSPACE.

Non-universality is in NPSPACE Consider an NBW A. Clearly L(A) 6= Σω iff L(A) 6= ∅, and
the latter holds iff L(A′) 6= ∅, where A′ is an NBW that complements A. Thus, it is enough to decide
whether A′ accepts some word. Recall from Theorem 3.12 that A′ accepts some word iff there exists a
self-reachable accepting state that is reachable from an initial state. Now, if we hadA′ written down, then
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this is easy to check. Unfortunately, we don’t. Moreover, computing it entirely may require exponential
space.

There are two ways to overcome this. The standard approach uses on-they-fly construction, and
is useful in many scenarios. We can also directly show an algorithm. In the following, we take both
approaches.

Construction On-The-Fly: The trick to overcome this is to construct A′ on-the-fly, and guess
the lasso through it. That is, we first guess the initial state, then we compute the possible transitions
from the initial state, and nondeterministically guess a successor. We proceed in this fashion for up to
the size of A′, namely 2O(n2), and observe that we can store a counter for up to that value in polynomial
space.

LIE ALERT!
This on-the-fly construction requires careful examining, and is not completely trivial. This is in part

due to the proof of complementation we used. There are other complementation constructions that are
more clearly doable on-the-fly (see [10]).

Thus, non-universality is in NPSPACE, and by Savitch’s Theorem, universality is in PSPACE.

Direct Algorithm: We show how to check whether L(A′) 6= ∅ in NPSPACE. Recall that by

Theorem 3.24, we can assume that A′ has at most 2O(n2) states. Thus, if there is some word that is
accepted by A′, there is also such a lasso word w = uvω where |u|, |v| ≤ 2O(n2).

Furthermore, by Lemmas 3.16 and 3.18, we know that there is such a word w iff w has a type-graph
of the form τ0τ

ω that does not have a directed path from an initial state that goes through infinitely
many blue edges. Also, from Remark 3.19, we can assume that τ is idempotent.

However, it is not necessarily the case that τ0 and τ are the types of u and v, respectively. That is,
the type of v might not be idempotent. In order to circumvent this problem, we slightly modify u and v,
as follows: observe that since there are only 4n

2

types, then if we consider the words v, v2, v3, . . . , v4n2+1,
there must exist i < j ≤ 4n2 + 1 for which the types of vi and vj coincide. Thus, τi · τj−i = τj = τi,
where e.g., τi is the type of vi, etc. But then we get that τi · τkj−i = τi for all k ≥ 1. Strictly speaking,
this does not mean that τj−i is idempotent, since τi might cause this equation to hold. But it does mean
that τj−i is idempotent when concatenated to τi. For our purposes, this is enough.

We can now write u′ = u·vi and v′ = vj−i, and we have that u′v′ω is a lasso word with an “idempotent
enough” type graph. Also, observe that |u′|, |v′| ≤ 2O(n2). We therefore assume in the following that u, v
already satisfy the conditions above, with τ and τ0 being the types of u, v, and τ idempotent.

So all we need to do is nondeterministically guess u and v (letter by letter, of course), and keep track
of their types. Once we’ve guessed them, we have the two types τ0 and τ , and it remains to check that
τ0τ

ω does not have a path with infinitely many blue edges.
To check that, we use the idempotency of τ again: observe that if there is a path with infinitely many

blue edges, then it must traverse one of those blue edges infinitely often, denote it (qi, qj). but then,
it also needs to go from qj back to qi, so there is also a path from qj to qi (path in the type-graph!),
and hence there is also a path from qi back to itself, that goes through a blue edge. But since τ is
idempotent4, then there must also be an edge (qi, qi), and moreover - a blue edge. It follows that τω

induces an infinite path with infinitely many blue edges iff it has a blue edge from a state to itself.
Thus, it’s enough to check that for every state q reachable by τ0 from Q0, the type graph of τ does

not have a blue edge (q, q).
All of this can clearly be done in polynomial space. So non-universality is in NPSPACE, and by

Savitch’s Theorem, universality is in PSPACE.

Universality is PSPACE-Hard There are two approaches we can take here. The first is to give a
proper reduction from the generic word problem for space-bounded TMs. This is taken in [10], and I
recommend reading it.

We’ll take a different approach, and reduce from the following problem:

ALLNFA = {〈N〉 : N is an NFA and L(N ) = Σ?}
4Basically, idempotency means that we take the edge closure, and thus each path is represented by an edge.
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which is well-known to be PSPACE-complete.
The reduction is simple, but not completely trivial. Given N = 〈Q,Σ, δ, Q0, F 〉, we construct an

NBW A. For didactic purposes, let’s start with an incorrect (but almost correct) attempt:

Incorrect attempt: We want to somehow augment N to work on infinite words. However, there
are intricate behaviours that use the alphabet of N , so adding and removing transitions is dangerous.
Instead, we introduce a new letter # and a new state q# that allow us to “leave” N , and define A =
〈Q′,Σ′, δ′, Q0, {q#}〉 with the following:

� The states are Q′ = Q ∪ {q#}.

� The alphabet is Σ′ = Σ ∪ {#}.

� The initial states remain Q0.

� The single accepting state is {q#} (but don’t worry, we retain the information on F in the transition
function).

� The transition function is defined as follows: for q ∈ Q and σ ∈ Σ we have δ′(q, σ) = δ(q, σ). In
addition, if q ∈ F then δ′(q,#) = {q#} (and otherwise δ′(q,#) = ∅). Finally, δ′(q#, σ) = {q#} for
every σ ∈ Σ′.

What does this construction give us? Well, if L(N ) = Σ∗, then every word w = u#v with u ∈ Σ? and
v ∈ (Σ′)ω is accepted by A. So the language of A is almost (Σ′)ω, it just might miss words that don’t
have #. But this is easy to fix, as we shall now see.

Correct solution: we take the construction of A in the incorrect attempt, and add to it a new state
qΣ which is initial, accepting, and has a self loop for every σ ∈ Σ. This makes sure all words without #
are accepted, and we are done.

Exercise 3.29. In the construction above, why not just keep the accepting states of N , instead of
adding the new sink state?

Theorem 3.30. The containment problem for NBWs is PSPACE-Complete.

Proof. This is almost a corollary of Theorem 3.28.
For the upper bound, observe that L(A) ⊆ L(B) iff L(A) ∩ L(B) = ∅. Thus, following the same

approach of on-the-fly construction, we only need to check the emptiness of L(A) ∩ L(B), which we can
do on-the-fly in polynomial space.

For PSPACE hardness, observe that L(A) = Σω iff Σω ⊆ L(A), and we can easily construct an
NBW for Σω, so we have a simple reduction from universality.

4 Additional Acceptance Conditions

“If you never did you should. These things are fun and fun is good” [Dr. Seuss].

Recall that in the Büchi acceptance condition, we said that a run is accepting if it visits the accepting
states infinitely often. While natural, this was somewhat an arbitrary decision.

It turned out to be quite useful, and we ended up with a fairly rich model, with interesting properties.
However, this model has some drawbacks. In particular, it is not determinizable (Theorem 3.13). This

is one reason to introduce new acceptance conditions. Another reason is that for modelling purposes,
often natural properties are easily captured by certain acceptance conditions and not by others, so this
allows some flexibility, especially when we have tractable algorithms that work on various acceptance
conditions.

Finally, the best reason to study other condition is that it is a lot of fun to study them and the
translations between them. So let’s get to it.

We define the following acceptance conditions, where each acceptance condition consists of the “type”
of α, and a definition of accepting run:
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Definition 4.1.

�co-Büchi co-Büchi, where α ⊆ Q and a run r is accepting if inf(r) ⊆ α.

�Rabin Rabin, where α = {(G1, B1), (G2, B2), . . . , (Gk, Bk)} and a run r is accepting if there exists 1 ≤
i ≤ k such that inf(r) ∩Gi 6= ∅ and inf(r) ∩Bi = ∅.

�Streett Streett, where α = {(G1, B1), (G2, B2), . . . , (Gk, Bk)} and a run r is accepting if for every 1 ≤ i ≤ k
we have that inf(r) ∩Gi = ∅ or inf(r) ∩Bi 6= ∅.

�Parity Parity, where α : Q→ {0, . . . , k} is a function, and a run r is accepting if min{α(q) : q ∈ inf(r)}
is even.

�Muller Muller, where α = {α1, α2, . . . , αk} with αi ⊆ Q, and a run r is accepting if there exists 1 ≤ i ≤ k
such that inf(r) = αi.

That is a lot to take in. We’ll make some sense of this mess as we go along.5

Remark 4.2 (Naming convention). The acronym NBW stands for “Nondeterministic Büchi automaton
over Words”. We can now plug in the names of the new acceptance conditions instead of the “B” (i.e.,
C,R,S,P, and M).

In addition, there are other structures on which automata may be ran, such as Trees or Graphs
(although we will not see this during the course), replacing the W with T or G. finally, there are other
“flavours” of nondeterminism, called Universality and Alternation, replacing N with U or A.

Thus, in general, automata models are acronymed XYZ where X ∈ {D,N,U,A} Y ∈ {B,C,R,S,P,M},
and Z ∈ {W,T}.

For example, NPW stands for nondeterministic parity automata over words, UCT stands for universal
co-Büchi automaton over trees, DSW for deterministic Streett automata, etc. 4

Let’s start with some examples.

s1 s2

s3

a, b

ab

a, b

Figure 6: Example automaton

Example 4.3. Consider the automaton in Figure 6. What is the language of the automaton when
viewed as:

1. An NBW with α = {s2} (Ans: words containing infinitely many ab)

2. An NRW with α = {({s1, s3}, {s2})} (Ans: {a, b}ω)

3. An NSW with α = {({s2}, {s3}), ({s3}, {s1})} (Ans: {a, b}ω)

4. An NCW with α = {s2} (Ans: ∅)

5. An NPW with α(s1) = α(s3) = 1, α(s2) = 0 (Ans: words containing infinitely many ab)

6. An NPW with α(s1) = α(s3) = 1, α(s2) = 2 (Ans: ∅).

4

In the Rabin, Streett, parity, and Muller conditions, the number k is called theindex index of the automaton.

5Conditions are named after: Julius Richard Büchi [1924–1984], Michael O. Rabin [1931–], Robert S. Streett [56–], and
David E. Muller [1924–2008] (also parity, brought to you by the Number 2).
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4.1 Expressive Power and Translations

Our main interest now is to see whether we gain anything with all those new conditions. In particular,
we wish to examine the expressive power of the classes. Consider two classes of automata, denoted γ
and κ. We say that γ is at least as expressive as κ, if every language that is recognizable using a κ
automaton, is also recognizable using a γ automaton. Let’s examine some expressiveness results.

Consider the co-Büchi acceptance condition. It is not hard to see that a run r is accepting in the
co-Büchi acceptance condition with set α iff it is not accepting in the Büchi condition with set Q \ α.
That is, co-Büchi is a “dual” condition to Büchi (hence the name). We can easily conclude the following.

Theorem 4.4. Let A = 〈Q,Σ, δ, q0, α〉 be a DBW, and consider the DCW B = 〈Q,Σ, δ, q0, Q \ α〉, then
L(B) = L(A).

Remark 4.5. In most textbooks and papers, co-Büchi is defined by saying that a run r is accepting for
condition α if inf(r) ∩ α = ∅. This has the advantage of making Theorem 4.4 even cleaner – in order to
complement a DBW, just “rename” it to a DCW.

However, this loses the flavour of “accepting”, and makes α a “bad” set, and I just don’t like it. 4

What about a nondeterministic analogue of Theorem 4.4? Alas, if you take an NBW, flip the accepting
states, and call it a DCW, you will not necessarily end up with the complement language (try to think
of an example!).

In fact, an interesting result is that NCWs are equally expressive to DCWs. We might even have
time to see it in this course.

Similarly to Theorem 4.4, the Rabin and Streett conditions are also dual (for deterministic automata):

Theorem 4.6. Let A = 〈Q,Σ, δ, q0, α〉 with α = {(G1, B1), (G2, B2), . . . , (Gk, Bk)} be a DRW, and
consider the DSW B = 〈Q,Σ, δ, q0, α〉 (syntactically identical to A), then L(B) = L(A).

Proof. A word w is accepted by A iff its unique run r is accepting. That is, if there exists 1 ≤ i ≤ k
such that r visits Gi infinitely often and Bi finitely often. This happens iff it is not the case that for all
1 ≤ i ≤ k, the run r visits Gi finitely often or Bi infinitely often, which, in turn, happens iff B accepts
w.

Remark 4.7. A useful way to view the Streett condition is to say that a run is accepting if for every
pair (Gi, Bi), if Gi is visited infinitely often, then so is Bi. This is just by viewing ¬a ∨ b as a→ b, but
it often makes it easier to understand. 4

We proceed by getting out of the way the “naive” translations: the cases where one acceptance
condition simply captures another. The proof of the following theorem is an almost trivial exercise.

Theorem 4.8. We have the following equivalences of acceptance conditions:

� A Büchi condition α is equivalent to the Rabin condition {(α, ∅)}, to the Streett condition {(Q,α)},

and to the parity condition α′(q) =

{
0 q ∈ α
1 q ∈ Q \ α

� A co-Büchi condition α is equivalent to the Rabin condition {(Q,Q \ α)}, to the Streett condition

{(Q \ α, ∅)}, and to the parity condition α′(q) =

{
1 q ∈ Q \ α
2 q ∈ α

� A parity condition α : Q → {0, . . . , k} (w.l.o.g. k is even) is equivalent to the Rabin condition
{(α=0, ∅), (α=2, α≤1), . . . , (α=k, α≤k−1)} and to the Streett condition {(α=1, α≤0), (α=3, α≤2) . . . , (α=k−1, α≤k)}
where α=i = {q : α(q) = i} and similarly α≤i = {q : α(q) ≤ i}

� A Büchi, co-Büchi, Rabin, Streett or parity condition α is equivalent to the Muller condition
{F : F satisfies α}.

We now proceed to study (some of) the less-naive equivalences. There are many, many results about
translating one type of automaton to another. Due to lack of time, we will focus on translations relating
to Büchi acceptance.
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Remark 4.9. When translating one class of automata to another, there are three possible kinds of
translations: the easiest is when one acceptance condition can be rephrased as another, as we have
done in Theorem 4.8. The next is when we can plug a new acceptance condition on top of the existing
automaton, but in a way which may require reasoning about the structure of the automaton. The third
case is when we actually need to construct a new automaton. 4

We’ll start with the translation from Rabin to Büchi.

Theorem 4.10. Let A be an NRW with n states and index k. There is an NBW B with at most 2nk
states such that L(A) = L(B).

Proof. Let A = 〈Q,Σ, δ, Q0, α〉 with α = {(G1, B1), . . . , (Gk, Bk)}. Denote by Ai the NRW with index
1 obtained from A by including only the pair (Gi, Bi) in the acceptance condition. Clearly we have

L(A) =
⋃k
i=1 L(Ai). By Theorem 3.6, NBW are closed under union. Thus, it’s enough to show the

translation for NRW with index 1 (however, we will need to take into account the size of the union
NBW).

Let A′ = 〈Q,Σ, δ, Q0, {(G,B)}〉 be an NRW with index 1. Thus, a run is accepting if it visits B
finitely often, and G infinitely often. We translate it to an NBW B, by following a similar idea to
Exercise 3.27: B will “guess” when states in B no longer occur, and check (using the Büchi acceptance
condition) that states in G occur infinitely often.

Formally, let B = 〈(Q×{1})∪((Q\B)×{2}),Σ, δ′, Q0×{1}, G×{2}〉, where for all q ∈ Q and σ ∈ Σ we
have δ′((q, 1), σ) = (δ(q, σ)×{1})∪((δ(q, σ)\B)×{2}) and if q /∈ B, then δ′((q, 2), σ) = (δ(q, σ)\B)×{2}.

That is, B holds two copies of A, the second one without B. It simulates the run of A within the first
copy, while nondeterministically guessing that states in B no longer occur, by moving into the second
copy. Then, in the second copy, we are not allowed to visit B, and the run is accepting if it visits G (in
the second copy) infinitely often.

Proving the correctness of this construction is a simple exercise.
Note that B has size 2n. As mentioned above, by taking the union over the k Rabin pairs, we obtain

an NBW of size 2nk, that is equivalent to A.

Exercise 4.11. Improve the bound given in Theorem 4.10 from 2nk to n(k + 1).

Combining the translation of parity to Rabin, given in Theorem 4.8, with Theorem 4.10, we have the
following.

Theorem 4.12. Let A be an NPW with n states and index k. There is an NBW B with at most 2nk
states such that L(A) = L(B).

So, we’ve managed to translate NRW to NBW by considering each Rabin pair separately. Can we
do the same thing with Streett automata? Unfortunately, no. Technically, the “reason” is that even if
a word is accepted under each Streett pair separately, the runs that witness this may be distinct, and
there might not be a run that satisfies all pairs simultaneously.

More fundamentally, the underlying reason is that the Rabin condition places an existential quantifier
on the Rabin pairs (‘‘there exists a pair such that...”), and this matches the flavour of nondeterminism:
a word is accepted if there exists an accepting run. However, in the Streett condition, the quantifier is
universal, and this clashes with the nondeterminism. Thus, in order to translate NSW to NBW, we must
do so holistically.

Theorem 4.13. Let A be an NSW with n states and index k. There is an NBW B with at most
n(k + 1)2k states such that L(A) = L(B).

Proof. Let A = 〈Q,Σ, δ, Q0, α〉 with α = {(G1, B1), . . . , (Gk, Bk)}, and recall that a run r is accepting if
for every 1 ≤ i ≤ k, either inf(r) ∩Gi = ∅ or inf(r) ∩Bi 6= ∅.

The idea behind the translation is to decompose the accepting runs according to the “way” they
satisfy the Streett conditions – for each pair (Gi, Bi), we consider whether the run accepts by satisfying
inf(r) ∩Gi = ∅ or by satisfying inf(r) ∩Bi 6= ∅.

More precisely, for a set I ⊆ {1, . . . , k}, we construct an NBW BI that accepts a word w iff there
exists a run r of A on w such that inf(r) ∩Gi = ∅ for all i ∈ I and inf(r) ∩ Bi 6= ∅ for all i /∈ I. Then,
we have that L(A) =

⋃
I⊆{1,...,k} L(BI), and we are done.
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Constructing BI is fairly similar to the two-copies construction, augmented by a product construction:
BI first guesses when none of the states in

⋃
i∈I Gi will be seen, and then proceeds to verify that

states in each Bi for i /∈ I are visited infinitely often. This is done as follows. For simplicity, assume
I = {1, . . . ,m}, so I = {m+ 1, . . . , k}. Denote GI =

⋃
i∈I Gi.

Let BI = {Q′,Σ, δ′, Q′0, α′}, where:

� Q′ = (Q× {0}) ∪⋃i/∈I(Q \GI)× {i}.
� Q′0 = Q0 × {0}.

� α′ = Bk × {k} (i.e., the “last” copy contains accepting states).

� For q ∈ Q and σ ∈ Σ we have δ′((q, 0), σ) = (δ(q, σ)× {0}) ∪ ((δ(q, σ) \GI)× {m+ 1}). For i /∈ I
and q /∈ GI , if q /∈ Bi then δ′((q, i), σ) = (δ(q, σ) \ GI) × {i}, and if q ∈ Bi then δ′((q, i), σ) =
(δ(q, σ) \ GI) × {i + 1}, where we identify k + 1 with m + 1 (that is, we cycle through copies
m+ 1, . . . , k whenever we see the respective Bi).

As usual, the correctness of the construction is easy to verify.
Finally, the size of BI is (at most) n(k+ 1), and B is obtained as a union of 2k such automata, so the

overall size is n(k + 1)2k.

Theorem 4.13 shows that translating an NSW to an NBW may incur an exponential blowup. As it
turns out, this blowup is unavoidable (see [10] for a lower bound).

Remark 4.14. The translations between acceptance conditions described in Theorem 4.8 require only
a naive change in the acceptance condition, and are essentially unrelated to the underlying automaton.
In contrast, the translations in Theorems 4.10 and 4.13 change the structure of the automaton.

There are some translations “in between” these extremes: sometimes one acceptance condition can be
translated to another without changing the structure, subject to conditions on the underlying automaton
(e.g., determinism). When such a translation from class A to class B is possible, we say that the A is
B-type. See [10] for more ontypeness typeness. 4

Remark 4.15. Udi Boker from IDC maintains a website with all the known translations (and bounds)
between types of automata. I strongly recommend checking it out: http://www.faculty.idc.ac.il/

udiboker/automata/wat.html 4

Exercise 4.16. Show that for every NMW (Nondeterministic Muller Automaton) A there exists an
NBW B such that L(A) = L(B).

What is the size of B (with respect to the size and index of A)?

From Theorems 4.10 and 4.13 and Exercise 4.16, we see that none of the acceptance conditions we
suggest is more expressive than NBW. It thus raises the question of why define them? One possible
answer is that sometimes, they are more succinct (i.e., they can capture the same language with less
states).

However, as we shall see in Section 4.2, they offer a lot in the deterministic realm.
Finally, I heartily recommend reading [1] for a very detailed survey of the automata types, translations

between them, and the reasons for their definitions.

4.2 Determinization of NBWs (and NCWs)

For many theoretical and practical uses, deterministic automata are more convenient to work with
than nondetemrinistic ones. Unfortunately, as we have seen in Theorem 3.13, DBWs are strictly less
expressive than NBWs. However, given the new acceptance conditions we introduced above, it is worth
asking whether we can determinize an NBW to a deterministic Rabin/Streett/Parity/Muller automaton.

As it turns out, the answer is yes. The “quest” for NBW determinization has a long and interesting
history. You can read all about it in [10] and references therein. The most notable parts for our purpose,
leaving out the historical goodies, is that Safra [23] provided a 2O(n logn) translation from NBW to DRW,
and Schewe [25] improved the construction, and made it from NBW to DPW (we will see later why this
is an improvement).
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4.2.1 NCW determinization

Safra’s theorem is notoriously difficult, both to understand and to optimize in practice. In an attempt
to make it clearer, we’ll start by tackling a less daunting task, namely determinizing NCWs.

The first step is to admit you have a problem

Why is determinization so difficult?
Recall that for finite automata, determinization is done using the subset construction: we keep a

record of all the reachable states, and when the word ends, if an accepting state is reachable, we accept.
We’ve already seen that this approach doesn’t work for NBWs (see Theorem 3.13), but let’s try to think
exactly what breaks down.

We’ll focus for now on NCWs, but similar problems (worse ones, actually) arise for NBWs.
Consider the NCW A in Figure 7, for the language of words with finitely many a’s.

q0 q1

a, b

a, b b

Figure 7: An NCW for the language of words with finitely many a’s.

For a word w ∈ {a, b}∗, we can describe all the runs of A on w using an infinite run DAG (Directed
Acyclic Graph), as demonstrated in Figure 8 (ignore the red line for now).

q0 q0 q0 q0 q0 q0 q0 q0

q1 q1 q1 q1 q1 q1 q1

a b a b b a b

∅ {q1} {q1} ∅ {q1} {q1} ∅ {q1}

Figure 8: A run DAG with the breakpoint construction.

It’s now easy to see what goes wrong with the subset construction: the accepting state q1 is present
in every reachable subset! This means we cannot possibly define a good acceptance condition on top
of this structure. The underlying reason for this problem, is that the subset construction only gives us
information about prefixes that end in an accepting state, not about whether an infinite path can be
composed of these prefixes.

So, intuitively, we need to store some more information about the run DAG. One way to proceed is
by storing the entire run DAG up to the current level. This is clearly enough to define a good acceptance
condition, but it’s also clearly unbounded, and we need the number of states to be finite.

The Breakpoint Construction

We will now use a clever, but simple, construction, called the breakpoint construction, which was proposed
by Miyano and Hayashi [18] (in fact, their construction handles the more general setting of Alternating
Automata).

Theorem 4.17. Let A be an NCW with n states, then there exists an equivalent DCW D with at most
3n states.

Proof. The idea behind the construction is the following: start with the subset construction, but in every
transition, keep track of runs that have not visited Q \ α recently (equivalently, we actually keep track
of the runs that have seen only α recently). Once we find a subset such that all its incoming runs visit
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Q \ α recently, we call this a breakpoint, and we “reset” this subset. Then, if we see infinitely many
breakpoints, the run is rejecting.

The additional subset is depicted in the red line of Figure 8.
We now formally define it. Let A = 〈Q,Σ, δ, Q0, α〉, define D = 〈2Q × 2Q,Σ, µ, (Q0, ∅), β〉 as follows.

The set of states is 2Q × 2Q (or rather a subset thereof). The transition function is defined as follows:
let (S, T ) ∈ 2Q × 2Q and let σ ∈ Σ. We define

µ((S, T ), σ) =

{
(δ(S, σ), δ(T, σ) ∩ α) T 6= ∅
(δ(S, σ), δ(S, σ) ∩ α) T = ∅

Thus, T starts by keeping track of all the accepting states, and with each transition it “loses” all the
states that do not stay within α. When no states remain, T resets, and this is a breakpoint.

We capture that using the acceptance conditions: β = {(S, T ) : S ∈ 2Q ∧ T 6= ∅}.
We now claim that L(A) = L(D). For the first direction, let w ∈ L(A), and let ρ = q0, q1, . . . be an

accepting run of A on w. This means that there exists N0 ∈ N such that for all i ≥ N0 we have qi ∈ α.
Consider the run of D on w, and assume it reaches a breakpoint in index N1 ≥ N0 (if it doesn’t then

D accepts w and we are done). Then, at index N1 + 1, the run of D on w is in state (S, T ) with qN1
∈ T .

Moreover, for every i ≥ N1 it holds that qi is in the second component of the run of D, by the definition
of the transition function. Thus, the run of D does not see any more breakpoints, so D accepts w.

Conversely, assume D accepts w, then the run of D on w, denoted ρ = (S0, T0), (S1, T1), . . . is
accepting. Thus, there exists N0 ∈ N such that for all i ≥ N0, we have Ti 6= ∅. We now need to show
that A has an accepting run on w. Consider the run DAG of A on w. It’s enough to show that this
graph has an infinite path from some state in Q0 that visits Q \ α only finitely many times.

We refer to the run DAG as a graph with infinitely many levels, where at each level we have the set
of reachable states in Q. Now, remove from the run DAG all the states in Q \ α after level N0. Since
Ti 6= ∅ for all i ≥ N0, it follows that for every level (every level, not just i ≥ N0), there exists a path
from Q0 that ends in some state in that level (this is basically just saying that the level is not empty).
So we now have finite runs to every level, but we’re still missing an infinite run.

As a rule, when you see an infinite tree with a finite branching factor, it’s KÖNIG TIME!

Lemma 4.18 (König’s lemma). A finitely branching infinite tree contains an infinite path.

Now we can use König’s Lemma, which tells us that the pruned run DAG has an infinite path starting
from Q0, as we wanted, so w ∈ L(A).

Finally, note that the theorem says that the size of D is 3n, whereas we only showed 4n. Try to see
why this is actually 3n.

4.2.2 NBW determinization

We are now mature enough to tackle NBW determinization.
Safra’s theorem is stated as follows.

Theorem 4.19. Let A be an NBW with n states, then there exists a DRW D with 2O(n logn) states and
index n such that L(D) = L(A).

and its DPW version is:

Theorem 4.20 ([25]). Let A be an NBW with n states, then there exists a DPW D with 2O(n logn)

states and index 2n such that L(D) = L(A).

Before we proceed to see the construction, let us remark that we already know a lower bound. Indeed,
in Theorem 3.26 we have seen a lower bound on NBW complementation: there is a family of languages
L(n) that have NBWs of size n+ 1, but an NBW for L(n) requires n! states. Now, suppose there was a
DRW for L(n) with less than n! states, then by Theorem 4.6 there would be a DSW for L(n) with less
than n! states. However, the proof of Theorem 3.26 can easily be adapted to work for DSW (or for that
matter, NSW), so that would yield a contradiction. Thus, we have the following.

Theorem 4.21. There is a family of languages L1, L2, . . . that have an NBW of size n + 1, but every
DRW for Ln requires at least n! states.

Finally, recall that n! = 2θ(n logn), so this gives a tight lower bound.
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4.2.3 Proof of Theorem 4.19

Remark: These notes follow the course notes of Automata, Logic, and Games given at Oxford University
by Prof. Luke Ong. They are based on the construction and examples from [25].

History Trees

The main idea behind NBW determinization is that of history trees. You can think of them as an exten-
sion of the subset construction and of the breakpoint construction, that contains much more information
about the runs.

Let Γ be a finite alphabet. AΓ-labelled
tree

Γ-labelled tree τ is a partial function τ : N∗ → Γ, which maps each
“position” x ∈ N∗ to its label t(x) ∈ Γ, such that the domain of τ , denoted dom(τ) is prefix closed (that
is, if xd ∈ dom(τ) then x ∈ dom(τ)).

Intuitively, a Γ labeled tree is just a (possibly infinite) tree, whose nodes are labelled with elements
from Γ. We also give explicit “names” to the nodes, by sequences of natural numbers (which means the
tree has a possibly unbounded arity).

We say that τ is:

�finite finite if dom(τ) is finite.

�ordered ordered if xd ∈ dom(t) implied that xe ∈ dom(τ) for every 0 ≤ e ≤ d.

See Figure 9 for an example. If xd and xe are two children of a node, with e ≥ d, we say that xe is
younger than xd. That is, the youngest child has a larger index (since it was “born” later)6.

Figure 9: A Γ-labelled tree for Γ = {♥,♦}. The names of the nodes are written in green, and the edges
are marked with blue numbers that show how the name of the child node is obtained. The root’s name
is the empty word ε. For example, node 30 is the 0’th child of node 3. This tree is finite and ordered.

We can now get to the central definition.

Definition 4.22. Let A = 〈Q,Σ, Q0, δ, α〉 be an NBW. Ahistory

tree

history tree for A is a 2Q \ ∅-labelled ordered
finite tree τ such that:

� the label of each node is a proper superset of the union of labels of all its children, and

� the labels of the children of each node are disjoint.

Observe that there are only finitely many possible history trees for a given NBW A. These history
trees can then serve as the basis for our state space.

Anenriched

history

tree

enriched history tree is a history tree equipped with additional labels, that indicate for each node
if it is unstable, or if it is a breakpoint (notions that we will define below).

6Had I known this earlier, my children would have definitely been named Shaull0 and Shaull1
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Updating history trees

Suppose we somehow manage to get our history trees to serve as a state space. We now define a sort of
transition function on them, by describing an “update” procedure.

Given a history tree τ for A, and σ ∈ Σ, we construct a new enriched history tree τ ′ as follows:

1. Update: for every x ∈ dom(τ), let τ ′(x) =
⋃
q∈τ(x) δ(q, σ).

That is, apply the transition function to all the states in all the nodes. Makes sense.

2. Create children: for every x ∈ dom(τ ′), create a new “youngest” child xd (i.e. with the largest
index) with τ ′(xd) = τ ′(x) ∩ α.

That is, the new child keeps track of the accepting states in its parent. Makes sense, just like in
the breakpoint-construction.

3. Horizontal merge: for every x ∈ dom(τ ′) and every q ∈ Q, if q appears in an older sibling of x,
then remove q from τ ′(x) and all of its descendants.

Intuitively, if q appears in an older sibling, then we’re already “tracking” it. No need to track it in
a newer copy. I wouldn’t say this makes sense, but it sounds like something clever.

4. Vertical merge: for every x ∈ dom(τ ′):

� if τ ′(x) = ∅, remove node x from τ ′ (an ∅ label could appear both in steps 2 and 3, and it
serves no purpose.)

� if τ ′(x) =
⋃
d∈N τ

′(xd), then remove all nodes xd, and call this a breakpoint for x.

Well, a node has to be a proper superset of its children. So if it isn’t, we kill all the children
(didn’t think you’ll see this sentence in a course on automata, did you?) The intuition about
this is again, similar to the breakpoint construction.

5. Repair order: Rename the nodes to restore order to τ ′ (in case some siblings were removed).
Call nodes that were renamed unstable.

Restoring the order is always good. But keep an eye out for these unstable nodes. They’ll play a
role soon.

Example 4.23. Consider the NBW in Figure 10.

Figure 10: An NBW to be determinized.

We demonstrate the update of a history tree in Figure 11.
4

DRW construction

Now that we defined history trees, the definition of the equivalent DRW is fairly straightforward (if
slightly inexplicable). We will then prove the correctness, and hopefully gain some intuition behind the
construction.

Let D = 〈S,Σ, s0, µ, β〉 be the following DRW:

� The state space S is the set of enriched history trees of A.

� The alphabet is still Σ (if you don’t understand this, maybe it’s time for a break).
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Figure 11: A history tree update for the NBW in Figure 10 with the letter a. The blue highlight
represents a breakpoint, and the red highlight represents an unstable position.

� The initial state s0 is the history tree that is just a root labelled by Q0. That is, dom(s0) = {ε}
and s0(ε) = Q0 (recall that s0 is itself a history tree).

� The transition function is defined by the tree update: for a history tree s ∈ S and σ ∈ Σ, µ(s, σ) = s′

is obtained by updating s according to the steps above, and marking the breakpoint and unstable
parts of the result s′ (the original enrichments on s are ignored for the transition purposes).

...drumroll...

� The Rabin acceptance condition is β = {(Gx, Bx) : x ∈ P} where:

– P is the set of positions in the history trees in S (sanity check: P ⊆ N∗)
– Gx ⊆ S is the set of enriched history trees where x is a breakpoint.

– Bx ⊆ S is the set of enriched history trees where x is unstable, or not in the domain.

That is, the acceptance condition says that a run is accepting if there is some position x that is
eventually always stable (that is, present and not unstable) and is infinitely often a breakpoint.

In Figure 12 we show an equivalent DRW to the NBW in Figure 10 obtained by the construction.

Correctness proof

We want to prove that L(A) = L(D). There are two directions to the proof – a hard direction, and a
harder direction.
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Figure 12: An equivalent DRW obtained by Safra’s determinization. The acceptance condition is
{({s2, s3, s4}, {s3})}, since the only position that can potentially be a breakpoint is 0.

L(A) ⊆ L(D): Let w ∈ L(A) and let ρA = q0, q1, . . . be an accepting run of A on w. Let ρD = s0, s1, . . .
be the (single) run of D on w. We claim ρD is accepting.

First, observe that the roots of the states in ρD are always stable. Indeed, the root never has siblings,
so it is never renamed. Thus, if the roots are infintely often a breakpoint, then ρD is accepting, and we
are done. Otherwise, Let i1 be the first index after the last breakpoint of the root, where qi1 ∈ α. By
Step 2 (create children) of the tree update, it follows that for every j ≥ i1, the state qj is in the label of
a child of the root (since there are no more vertical merges to the root).

Moreover, from some point and on, all the states qj are in the label of a stable child of the root.
Indeed, horizontal merges can only transfer a state to an older sibling, so after some point either we
reach sibling 0, or we get stuck at some higher sibling that is never renamed. Call this stable child x1. If
x1 is infinitely often a breakpoint, then ρD is accepting and we are done. Otherwise, following the same
logic, we get that eventually the states of ρA are in a label of a stable child x2 of x1. If x2 is infinitely
often a breakpoint, we’re done, and so on.

Since the history trees are of depth at most |Q|, this must terminate at some point, at which the
position is infinitely often a breakpoint (since it has no stable child that contains the states of the ρA).
So w ∈ L(D).
L(D) ⊆ L(A): Let w ∈ L(D), and let ρD be the accepting run of D on w. Thus, there is some position
x that is eventually always stable, and infinitely often a breakpoint. Denote by Ri the label (i.e. the set
of states of A) at position x for the at the i-th time x is a breakpoint, after it is stable. Let ui be the
infix of w read between the i-th breakpoint and (i+ 1)-th breakpoint, and let u0 be the prefix of w read
before R1.

What can we say about these Ri? First, for every r ∈ R1, there is a (finite) run of A on u0 from
Q0 that ends in r. Somewhat similarly, for every r ∈ Ri+1, there is a state q ∈ Ri such that there is a
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finite run of A on ui from q to r. But we can actually say something much stronger: for every r ∈ Ri+1,
there is a state q ∈ Ri such that there is a finite run of A on ui from q to r that passes through α.
Indeed, Since at Ri+1 x is a breakpoint, then it was just vertically-merged, meaning that all its states
appeared in its children. But the children are created (initially) only using states in α. So a vertical
merge essentially means that all the states are reachable via a path that visited α. That is, if you think
about the subset construction starting from Ri, if there was a state in Ri+1 that is not reachable from
Ri via α, then such a state would not appear in the children at Ri+1, so there would not be a breakpoint.

It seems like we’re almost done. We have runs that visit α quite often. But we’re still missing an
infinite run. Observe that in the argument above, runs go “backward”: we know that r ∈ Ri+1 is
reachable from q ∈ Ri, and so on. But we don’t know how to continue from r to Ri+2. We proceed
as follows. Arrange the (finite) runs that we do have in a run tree. That is, a Q-labelled tree which
represents the runs of A that are obtained by concatenating the runs we found above. Note that this
is an infinite tree (since there are infinitely many Ri’s), but it has a finite branching factor, since from
each node we have at most |Q| outgoing runs (since |Ri| ≤ |Q|).

And what do we say to infinite trees with a finite branching factor? It’s KÖNIG TIME! From König’s
lemma (Lemma 4.18) we now get that the run tree above has an infinite run, but then this infinite run
of A visits α infinitely often, so w ∈ L(A).

The size of D:

We now turn to analyze the size of D. To do so, we need to count the number of possible enriched history
trees of A. Let n denote the number of states in A. Recall that in a history tree, each node is a proper
superset of the union of its children, and that the nodes in the children are disjoint. It easily follows (by
induction on n) that a history tree can have at most n nodes.

Now, by Cayley’s tree formula, there are exactly nn−2 labelled trees over n nodes. In our case,
however, we consider ordered labelled trees. So we can actually permute the nodes on each level. As an
upper bound, we can just say that each of the above trees can induce at most n! ordered trees. So our
running total is nn−2 · n! trees.

Next, it is not only important to us that the labels are distinct, we are also interested in what the
actual labels are. A-priori, each node can be labelled by a set of state S ⊆ Q, so a tree with n nodes
induces (2n)n = 2n

2

labellings, which would be too many. Instead, observe that by the structure of the
labelling, each state in Q appears along (at most) a single path from the root, ending in some node.
Thus, the labelling is uniquely determined by setting, for each state q ∈ Q, the node in which this path
ends. So for every state we have n+ 1 options (one of the nodes in the tree, or none of them), giving us
a total of (n+ 1)n possible labellings.

We thus have a running total of nn−2 · n! · (n+ 1)n.
Finally, for each of the nn−2 ·n! · (n+ 1)n trees, we need to mark the breakpoint and unstable nodes.

This gives another 4n options per tree (4n because each node is marked with breakpoint, unstable, both
or neither). So the number of states of D is at most nn−2 · n! · (n+ 1)n · 4n = 2O(n logn)

Also, since each tree has at most n nodes, the index of D is at most n.

5 Kripke Structures and Model Checking

Recall that our goal is to model and reason about systems. So far we have provided the technical basis
for this, which is automata. But we still haven’t seen how they aid us to achieve this goal.

In this section, we introduce our formalisms for describing systems and semantics. We’ll start with
an example.

Example 5.1 (Mutex Protocol). We have two processes that wish to gain access to a critical section in
their code. Their behaviour is modeled by the following code:

Process 0: Repeat

00: <non-critical region 0>

01: wait unless turn = 0

10: <critical region 0>

11: turn := 1

Process 1: Repeat

00: <non-critical region 1>

01: wait unless turn = 1

10: <critical region 1>

11: turn := 0
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How do we describe the current state of the system (where the “system” is the composition of the two
processes)? We need to describe, for each process, in which line it currently is, as well as the value of
the shared variable turn. Thus, a state of the system is of the form (a1, a2, b1, b2, t), where a1a2 is the
line number of Process 0, b1b2 is that of Process 1, and t is the shared variable. For convenience we’ll
write the states as e.g., (00, 10, 1).

We remark that we enumerate the lines in binary rather than using actual numbers, since we will
later want to describe everything using Boolean propositions (see Definition 5.2 below).

Now, the states give rise to transitions between them. For example, from the (initial) state (00, 00, 0),
the next state can be (01, 00, 0) or (00, 01, 0). Then, from (00, 01, 0), the next state can be either (00, 01, 0)
(if the “wait” was taken in Process 1) or (01, 01, 0). This can proceed on and on.

Note that we assume each transition can be taken, so in a sense we have nondeterminism here.
But the world is deterministic (to the best of our knowledge), so where did this nondeterminism come
from? Well, the idea is that these processes actually act in within some larger system, in the presence
of a scheduler. But since we (the designers) don’t know the scheduler, we abstract it away by saying
“everything is possible”.

Now that we have our model for the system, what kind of properties to we want to make sure it
satisfies?

� Safety: it is never the case that both critical sections are entered simultaneously. This can be
formulated as “states of the form 10, 10, t are not reachable”.

� Liveness: we want to see some progress in the program. This can be formulated as “infinitely often
10, b1b2, t or a1a2, 10, t are reached”

� Fairness: each process reaches the critical section infinitely often: “infinitely often 10, b1b2, t and
a1a2, 10, t are reached”

Does the system satisfy these properties? it satisfies safety, but not (necessarily) liveness nor fairness. 4

In the following we will investigate how to formally define systems and specifications, and how to
check whether a system satisfies its specification.

5.1 Kripke Structures

We model our systems using Kripke structures. Intuitively, a Kripke structure is a directed graph, whose
states are labeled with sets of truth values for Boolean atomic propositions {p1, . . . , pm}. The infinite
paths in this graph model the various behaviours of the system.

Definition 5.2. AKripke

Structure

Kripke Structure over atomic propositions P = {p1, . . . , pm} is K = (S,R,L , S0)
where:

� S is a finite set of states.

� R ⊆ S×S is a total transition relation (i.e., for every s ∈ S there exists s′ ∈ S such that (s, s′) ∈ R)

� L : S → 2P is a labeling function, assigning to each state a set of propositions.

� S0 ⊆ S are the initial states.

Apath path in a Kripke structure K = (S,R,L , S0) is an infinite sequence of states ρ = s0, s1, s2, . . .
such that s0 ∈ S0 is an initial state, and for every i ≥ 0 we have (si, si+1) ∈ R. Thelabeling labeling of ρ is

L (ρ) = L (s0)L (s1) · · · , and is regarded as a word in (2P )ω. A
computation

computation of K is the labeling of a
path of K.

Thelanguage language of K (over the alphabet 2P ) is then L(K) = {π : π is a computation of K}.
Since our technical tool is automata, we want to translate Kripke structures to automata.

Theorem 5.3. Let K = (S,R,L , S0) be a Kripke structure over atomic propositions P . We can
construct in polynomial time an NBW AK over alphabet 2P such that L(AK) = L(K).
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Proof. The idea is quite simple: AK looks exactly like K, but we “push” the labels to the transitions
instead of the states.

Formally, AK = 〈S, 2P , δ, S0, S〉 where for every state s ∈ S and letter σ ∈ 2P we have

δ(s, σ) =

{
{s′ ∈ S : (s, s′) ∈ R} σ = L (s)

∅ σ 6= L (s)

That is, from every state s we are allowed to read only the label of s, in which case we progress to all
neighbors. Note that all the states in AK are accepting.

Clearly a word is accepted by AK iff it is a computation of K. In addition, words that are not accepted
simply do not have runs in AK.

5.2 Model Checking

Now that we have a formalism for systems, comes the question of how to specify properties of such
systems. We first need to define what properties are.

Definition 5.4. Let P = {p1, . . . , pn} be atomic propositions. A
linear-time

property

linear-time property over P is an

ω-language L ⊆ (2P )ω.

Definition 5.4 doesn’t tell us much, it only sets a baseline as to what we mean by properties. In
particular, we do not restrict the class of ω-languages in any way (but we will very shortly).

Given a system and a property, the problem of deciding whether the system satisfies the property is
called model checking. Without some restrictions on the properties, however, this problem is not entirely
well defined.7

The first type of properties we can restrict to are ω-regular ones, given by NBWs.
NBW Model Checking:

Given: A Kripke structure K and an NBW A.

Question: Is every computation of K accepted by A?

Theorem 5.5. The NBW model checking problem is PSPACE-Complete.

Proof. Observe that the NBW model checking problem actually asks whether L(K) ⊆ L(A). By
Theorem 5.3 we can construct AK in polynomial time, and by Theorem 3.30, we can check whether
L(AK) ⊆ L(A) in polynomial space.

For the lower bound, we easily reduce from the universality problem for NBW: given an NBW A,
assume w.l.o.g. its alphabet is of the form 2P for P = {p1, . . . , pk} (it is easy to adapt all our proofs to
such settings). Then, construct a Kripke structure KALL such that L(KALL) = (2P )ω. This is easy to
do: KALL is a complete graph on 2P states, where each state has a unique label, and all the states are
initial.

Then, L(KALL) ⊆ L(A) iff L(A) = (2P )ω.
Also, observe that this reduction is indeed in polynomial time, since computing KALL requires building

2|P | states, but 2P is the alphabet of A, and so the description of A includes this, and it is thus linear
in the size of the input.

Remark 5.6. An important aspect of NBW model checking is that it relies on checking containment
of NBWs. Recall from Theorem 3.30 that for containment, we only complement the NBW on the “right
hand side”, so we only have an exponential blow up there.

For model checking, this translates to the algorithm being exponential in the NBW (the specification),
but not the system. This is very good news: typical systems are huge, but typical specifications are quite
small. 4

7the reason is that it is not clear how to specify the input. An algorithm cannot take as input a “language”.
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6 Linear Time Temporal Logic (LTL)

It is unnatural for humans to design automata. Indeed, systems are typically obtained by abstractions of
code in various languages (e.g., VHDL for chip design, procedural or declarative languages for software,
etc.). The same goes for specifying properties. Hence, there is a need for a more convenient specification
formalism.

6.1 LTL – Syntax and Semantics

In 1977, Amir Pnueli proposed a logic for reasoning about (linear) time, called Linear Temporal Logic
(LTL) [21]. This turned out to be a seminal contribution to the field of formal verification, for which
Pnueli received the Turing award in 1996.

LTL allows us to specify properties of infinite computations over the alphabet 2AP for a finite set
AP ofatomic

propositions

atomic propositions.
Before diving into the formal syntax and semantics, let’s start with an example.

Example 6.1. Recall our mutex example (Example 5.1). We’ll write some LTL formulas that describe
certain properties. The atomic propositions are AP = {p1, p2, p3, p4, t}.

� The property “infinitely often Process 0 reaches its critical section” is written as GF(p1∧¬p2), and
reads as “Always Eventually p1 and not p2”. This formula is satisfied in an infinite computation
π ∈ (2AP )ω iff in every suffix (i.e. always, G) there exists some point (i.e. eventually, F) where p1

is true and p2 is not true (i.e. we reached a code line starting with 10).

� The property “it is never the case that both processes are in their critical section” is written as
G¬(p1 ∧ (¬p2) ∧ p3 ∧ (¬p4)). This is read as “Always it is not the case that...”

� The property “if Process 1 is waiting, and turn=1, then in the next step Process 1 is in its critical
section” is written as

G(((¬p3) ∧ p4 ∧ t)→ X(p3 ∧ ¬p4))

where X is read as “next” or “in the next step”. Note that here, G was implicit in the English
description of the property.

� The property “Always, if process 0 is in its critical section, then turn=0 until the process leaves
the critical section” is written as

G((p1 ∧ (¬p2))→ ((¬t)U(p1 ∧ p2)))

and read as “always, if p1 and not p2, then not t until (p1 ∧ p2)”

� The properties can of course also say things that are undesirable: FG((¬p1) ∧ p2) says that from
some point and on, Process 0 is waiting.

4

We are now ready for the formal definitions.

Definition 6.2 (LTL Syntax). Let AP be a finite set of atomic propositions. AnLTL
formula

LTL formula ϕ over
AP is defined inductively as follows:

� true or p for p ∈ AP .

� ¬ψ, ψ1 ∨ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

Equivalently, we can say that an LTL formula is given by the grammar

ϕ := true | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

The semantics of LTL are defined with respect to an infinite computations over AP . Let π =
σ1σ2 . . . ∈ (2AP )ω, for i ≥ 1 we define its suffix πi = σiσi+1 . . . ∈ (2AP )ω.
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Definition 6.3 (LTL Semantics). Let ϕ be an LTL formula over AP , and let π = σ1σ2 . . . ∈ (2AP )ω.
We say that πsatisfies satisfies ϕ, and write π |= ϕ, to indicate that ψ holds in the computation π.

The relation |= is defined inductively (on the structure of the formula) as follows.

� π |= true for all π.

� π |= p for p ∈ AP iff p ∈ σ1.

� π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.

� π |= Xψ1 iff π2 |= ψ1.

� π |= ψ1Uψ2 iff there exists k ≥ 1 such that πk |= ψ2 and for all 1 ≤ i < k, πi |= ψ1.

The operators true,∨, and ¬ are straightforward (“true”, “or”, and “not”). The atomic proposition
p means “p is true now”. Recall that the computation is over 2AP , so each letter is in fact a subset
of the atomic propositions. The temporal operator Xψ, read as “next ψ”, says that ψ will hold in the
next step. The temporal operator ψ1Uψ2, read as “ψ1 until ψ2”, says that ψ2 holds at some point in the
future, and until then, ψ1 holds.

In Example 6.1, we saw some additional operators, which we now define as abbreviations of existing
operators. Specifically, we define F (“eventually”), G (“always”), and R (“release”)8.

Definition 6.4 (Additional Operators).

� The standard propositional operators ∧,→,↔, etc. are defined as usual (e.g., ψ1 → ψ2 ≡ ¬ψ1∨ψ2).

� Fψ ≡ trueUψ. Then, π |= Fψ iff there exists k ≥ 1 such that πk |= ψ.

� Gψ ≡ ¬F¬ψ. Then, π |= Gψ iff for every k ≥ 1 we have that πk |= ψ.

� ψ1Rψ2 ≡ ¬((¬ψ1)U(¬ψ2)). Then, π |= ψ1Rψ2 iff for all k ≥ 1, if πk 6|= ψ2 then there is 1 ≤ i < k
such that πi |= ψ1.

Example 6.5. Let’s see some simple LTL examples, over various sets of atomic propositions.

� GFp — p holds infinitely often.

� FGp — p holds from some point on.

� G(req → Xack ∨ XXack) — every request is followed by an ack after one or two steps.

� p ∧ G(p↔ XXp) — p holds exactly in all odd indices.

� G(err → (f ixR¬operate)) — once an error occurs, the system does not operate until it is fixed.

� ¬hope ∧ Fbad — there is no hope, something bad will happen eventually.

4

An LTL formula ϕ defines thelanguage language L(ϕ) = {π ∈ (2AP )ω : π |= ϕ} of computations that satisfy
it. We say that an LTL formula is

satisfiable

satisfiable if L(ϕ) 6= ∅.
We lift the definition of satisfaction from computations to Kripke structure. We say that a Kripke

structure K satisfies an LTL formula ϕ, writtenK |= ϕ K |= ϕ, if L(K) ⊆ L(ϕ). That is, if every computation
of K satisfies ϕ.

8ψ1Rψ2 means, intuitively, that ψ2 must hold either forever, or until ψ1 holds.
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6.2 Decision Problems for LTL

We defined LTL to help us formulate specifications. So the natural questions are whether we can use
LTL for specification-checking procedures.

In particular, the following two problems are of interest:
LTL Satisfiability:

Given: LTL formula ϕ.

Question: Is ϕ satisfiable?

LTL Model Checking:

Given: LTL formula ϕ, Kripke Structure K
Question: Does K |= ϕ?

Remark 6.6. Notice that the model-checking problem has a “universal flavor” – all the computations
of K must satisfy ϕ. This is somewhat arbitrary. We could have asked that there exists a computation
that satisfies ϕ.

This, however, is completely dual: there exists a computation that satisfies ϕ iff K 6|= ¬ϕ. Thus, for
all intents and purposes, it’s enough to consider the current definition. 4

Recall that satisfiability amounts to deciding whether L(ϕ) = ∅, and model checking amounts to
deciding whether L(K) ⊆ L(ϕ). Thus, in order to solve these questions, we need some tool to handle
languages. Can you think of such a tool? if not, maybe a course on automata, logic, and games just
isn’t for you.

6.3 From LTL to NGBW

Naturally, we will show how to translate LTL to automata, and use the rich theory we’ve developed.
Specifically, we will translate LTL to NGBW (nondeterministic generalized Büchi automata, that you
saw in the exercise). Then, we can translate NGBW to NBW, if we so choose.

The construction is due to Vardi and Wolper [28], and is one of several known constructions. We will
prove the following theorem.

Theorem 6.7. Let ϕ be an LTL formula of size n, then there exists an NGBW Aϕ with 2O(n) states
and index O(n), such that L(ϕ) = L(Aϕ)

Unlike some other constructions, the construction in the proof of Theorem 6.7 is not “magic”. There
is a very sensible intuition behind it, and understanding it gives good insight both into LTL and into
automata. Naturally, this is said in hindsight, and coming up with the construction initially requires
some brilliance.

We give some intuition before diving into the proof. The following doesn’t have to really make sense
at this point, but read through it nonetheless, as it might make the actual proof more understandable.

How does a path π satisfy an LTL formula? Assume you (the reader) are π.

� If the formula says that p should be seen now, then you better have p in your current letter.

� If it says that p ∨ (¬q), then you should have p in your current letter, or don’t have q in it.

� What if it says Xp? Well then, you’re ok for now, no matter what you have, but in the next step
you really should have p.

� And what about pUq? Well, this is really interesting. If you have q, you’re all good. If you don’t
have q and you don’t have p, I’m afraid it’s game over for you. But what if you have p? Well, you
do get to live another day, but you’re not in the clear yet. In the next step, you still need to satisfy
pUq.

This last point is closely related to the following useful identity, called (in these notes) thedelayed U
property

delayed
U property :

ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2))

which shows how U can be “delayed” to the next step.
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This is all lovely, but you probably don’t see yet where it’s going. The point of this is that most of the
checks the automaton needs to do are local : either make sure something is true now, or in the next step.
This is right up the alley for automata. The only problem is how to handle these pesky U operators.
We’ll get to that later.

There is, however, another idea incorporated into this construction: consider the formula Xp. It is
satisfied if the second letter has p. But what should we check for in the first letter? Intuitively – nothing.
This, however, makes things slightly complicated, since we need to tell the automaton that at some
points we “don’t care” about the values of certain propositions. It gets messy. To overcome this, the
Vardi-Wolper construction does something clever: the automaton “commits” to a certain value for each
proposition, and moreover – for each subformula. It guesses, at each stage, exactly which subformulas
hold. Then, it makes sure that the guesses are consistent with what is actually read, using the locality
principles mentioned above.

A bit vague? Sure. Let’s make it precise.

The Construction

For an LTL formula ϕ, the closure of ϕ, denoted cl(ϕ), the set of subformulas of ϕ. For example,
cl(X(p ∨ q)U¬q) = {X(p ∨ q)U¬q, (p ∨ q)U¬q, p ∨ q,¬q, p, q}. Then, theextended

closure

extended closure of ϕ, denoted
xcl(ϕ), is the set of all the subformulas and their negations. In our example, xcl(X(p ∨ q)U¬q) =
{X(p ∨ q)U¬q,¬X(p ∨ q)U¬q, (p ∨ q)U¬q,¬(p ∨ q)U¬q, p ∨ q,¬p ∨ q,¬q,¬p, p, q}.

Formally, we define it as follows.

Definition 6.8 (Extended Closure). Let ϕ be an LTL formula over AP . xcl(ϕ) is the smallest set of
formulas that satisfies the following:

� ϕ ∈ xcl(ϕ).

� If ψ ∈ xcl(ϕ) then ¬ψ ∈ xcl(ϕ) (we identify ¬¬ψ with ψ).

� If ¬ψ ∈ xcl(ϕ) then ψ ∈ xcl(ϕ).

� If ψ1 ∨ ψ2 ∈ xcl(ϕ) then ψ1 ∈ xcl(ϕ) and ψ2 ∈ xcl(ϕ).

� If Xψ ∈ xcl(ϕ) then ψ ∈ xcl(ϕ).

� If ψ1Uψ2 ∈ xcl(ϕ) then ψ1 ∈ xcl(ϕ) and ψ2 ∈ xcl(ϕ).

Consider a computation π = σ1σ2 . . . ∈ (2AP )ω. For every i ≥ 1, we can think of the set of formulas
S ⊆ xcl(ϕ) that are true in the suffix πi. Observe that the set S cannot be completely arbitrary. For
example, exactly one of p ∈ S or ¬p ∈ S holds, since either p ∈ σ1 or p /∈ σ1. This motivates the
following definition:

Definition 6.9 (Propositional Consistency). A set S ⊆ xcl(ϕ) is
propositionally

consistent

propositionally consistent if:

� for all ψ ∈ xcl(ϕ) we have ψ ∈ S iff ¬ψ /∈ S.

� for all ψ1 ∨ ψ2 ∈ xcl(ϕ) we have ψ1 ∨ ψ2 ∈ S iff ψ1 ∈ S or ψ2 ∈ S.

We are now ready to describe the construction. We build the NGBW A = 〈Q, 2AP , Q0, δ, α〉 as
follows.

The set of states Q ⊆ 2xcl(ϕ) is the set of all propositionally-consistent subsets of xcl(ϕ). The
transitions are defined as follows. Let S, S′ ∈ Q and let σ ∈ 2AP . Then S′ ∈ δ(S, σ) iff all the following
hold:

� σ = S ∩AP . That is, p ∈ σ iff p ∈ S for all p ∈ AP .

� For all Xψ ∈ xcl(ϕ) we have Xψ ∈ S iff ψ ∈ S′.

� For all ψ1Uψ2 ∈ xcl(ϕ), we have ψ1Uψ2 ∈ S iff either ψ2 ∈ S or ψ1 ∈ S and ψ1Uψ2 ∈ S′.
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The set of initial states Q0 is the set of all S ∈ Q such that ϕ ∈ S.
Finally, for each subformula ψ1Uψ2 ∈ xcl(ϕ) we add to the generalized Büchi condition α the set

αψ1Uψ2 = {S ∈ Q : ψ2 ∈ S or ¬(ψ1Uψ2) ∈ S}

Observe that we can equivalently write

αψ1Uψ2
= {S ∈ Q : ψ1Uψ2 ∈ S =⇒ ψ2 ∈ S}

which is arguably the “correct” way of viewing αψ1Uψ2
. Intuitively, it means that “if ψ1Uψ2 should hold,

then its eventuality is satisfied right now.”
We now turn to prove correctness and analyze the size of the construction.
The size is easy: the number of states is 2O(|ϕ|), since the states are subsets of xcl(ϕ), whose size is

at most 2|ϕ|. Recall, however, that in NGBW we also care about the index. Since each U subformula
contributes a single accepting set, then the total index is at most |ϕ|.

We can now complete the proof.

Lemma 6.10. L(A) = L(ϕ)

Proof. We now prove the correctness of the construction. First, consider a word π = σ1σ2 . . . ∈ (2AP )ω.
For each suffix πi of π, let λ(πi) = {ψ ∈ xcl(ϕ) : πi |= ψ} be the set of formulas in xcl(ϕ) that are
satisfied in πi. We then associate with π the infinite sequence Λ(π) = λ(π1)λ(π2) . . ..

Note that clearly each λ(πi) is a propositionally consistent set, so we can think of it as a state of A.
For the first direction, we claim that if π |= ϕ, then Λ(π) is an accepting run of A on π. This is easy

to show: since ϕ ∈ λ(π1), then λ(π1) ∈ Q0. Furthermore, we always have λ(πi+1) ∈ δ(λ(πi), σi), since:

� We trivially have that λ(πi) ∩AP = σi,

� for all Xψ ∈ xcl(ϕ), Xψ ∈ λ(πi) iff ψ ∈ λ(πi+1), and

� for every ψ1Uψ2 ∈ xcl(ϕ), by the “delayed until” property we have that ψ1Uψ2 ∈ λ(πi) iff either
ψ2 ∈ λ(πi), or ψ1 ∈ λ(πi) and ψ1Uψ2 ∈ λ(πi+1)

so the conditions for a transition hold. Finally, Λ(π) is an accepting run. Indeed, for every ψ1Uψ2 ∈
xcl(ϕ), whenever ψ1Uψ2 ∈ λ(πi) then by the definition of U, there exists some k ≥ i such that ψ2 ∈
λ(πk) (and hence also ψ1Uψ2 ∈ λ(πk), otherwise there aren’t any outgoing transitions from λ(πk)) and
ψ1 ∈ (λ(πj)) (and hence also ψ1Uψ2 ∈ λ(πj)) for every i ≤ j < k. Thus, if ψ1Uψ2 ∈ λ(πi) for infinitely
many i’s, then a state in αψ1Uψ2 is visited infinitely often, and otherwise, αψ1Uψ2 is visited always from
some point on. We conclude that π ∈ L(A).

For the converse direction, assume π ∈ L(A), and let ρ = ρ1, ρ2, . . . be an accepting run of A on π.
We claim that ρ = Λ(π). To prove this, we prove that for every i ≥ 0 and for every ψ ∈ xcl(ϕ) we have
ψ ∈ ρi iff ψ ∈ λ(πi) (that is, iff πi |= ψ). We prove this by induction over the structure of ψ.

� If ψ = p ∈ AP , then clearly p ∈ ρi iff p ∈ σi iff πi |= p (otherwise there wouldn’t be an outgoing
transition from ρi with σi).

� If ψ = ¬ψ′ or ψ = ψ1 ∨ψ2, the claim follows immediately by the induction hypothesis (and by the
consistency requirement of the states of A).

� If ψ = Xψ′, then Xψ′ ∈ ρi iff ψ′ ∈ ρi+1, which by the induction hypothesis happens iff πi+1 |= ψ′,
so πi |= Xψ′.

� If ψ = ψ1Uψ2 (the interesting case), consider ρi. Since ρ is accepting, there exists k ≥ i such that
ρk ∈ αψ1Uψ2

. Let k be minimal with this property. Then, by a simple inductive argument, we see
that ψ1Uψ2 ∈ ρi iff for every i ≤ j < k it holds that ψ1 ∈ ρj and ψ1Uψ2 ∈ ρj , and in addition,
ψ1Uψ2 ∈ ρk. This happens iff ψ2 ∈ ρk (since ρk ∈ αψ1Uψ2), and applying the induction hypothesis
on ψ1 and ψ2 shows that this is equivalent to πi |= ψ1Uψ2.

Since λ(π1) ∈ Q0, then ϕ ∈ λ(π1), so by the above we have π |= ϕ.
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Remark 6.11. As the proof of Lemma 6.10 shows, it is crucial that the run is accepting in order for it
to reflect Λ(π) correctly. Indeed, for example a run on the formula p ∨ Fq can “wrongly” guess that the
formula is satisfied due to p ∧ Fq being satisfied, rather than just p, and wait in a non accepting loop
without visiting q, even though a satisfying computation, e.g. pω was given.

4

Since the translation from NGBW (with size n and index k) to NBW results in an NBW with n · k
states, we have the following.

Theorem 6.12. Let ϕ be an LTL formula of size n, then there exists an NBW Aϕ with 2O(n) states
such that L(ϕ) = L(Aϕ)

Remark 6.13. Observe that the construction above is easy to perform on-the-fly. As usual, this will
become useful when using it in space-saving algorithms. 4

Lower Bound on LTL→ NBW

The construction in Theorem 6.12 involves an exponential blowup. The immediate question is: is this
blowup necessary? The answer (of course) is yes, as we shall now show.

The proof is a bit indirect. We will actually show the following.

Theorem 6.14. The translation from LTL to DPW (or DRW or DSW) is double-exponential.

Recall that the translation from NBW to DPW (or DRW or DSW) has a blowup of 2O(n logn). Thus,
if there is a translation from LTL to NBW with a sub-exponential blowup, we would get a contradiction
to Theorem 6.14. Thus, the above would give us the following.

Theorem 6.15. The translation from LTL to NBW is exponential.

Proof of Theorem 6.14. We construct a family of languages Ln such that Ln can be defined by an LTL
formula of size O(n2), and every DPW for Ln requires at least 22n

states.
Let Σ = {0, 1,#, $}. Observe that Σ is not of the form 2AP , but it can easily be described as such

using two atomic propositions. Define

Ln = {{0, 1,#}∗ ·# · x ·# · {0, 1,#}∗ · $ · x ·#ω : x ∈ {0, 1}n}

That is, a word w is in Ln if after the single occurrence of $, the word of length n over {0, 1} has appeared
before, between two #’s.

We start by proving that every DPW for Ln needs at least 22n

states (this is adapted from [4]). Assume
by way of contradiction that D is a DPW for Ln with less than 22n

states. For every S ∈ 2{0,1}
n

, thought
of as a set S = {y1, y2, . . . , yk} of words of length n over {0, 1}), define uS = #y1#y2# · · ·#yk#$.

By our assumption, there are two distinct sets S,R such that the run of D on uS and on uR reaches
the same state q. W.l.o.g. let x ∈ S \R, then uS ·x#ω ∈ Ln, but uR ·x#ω /∈ Ln, which is a contradiction.

We now show how to define Ln in LTL. Denote by Xi the nesting XX . . .X︸ ︷︷ ︸
i times

. We construct a formula

ϕ = ψ1 ∧ ψ2 as follows:

� ψ1 states that $ occurs exactly once, and is followed by n letters from {0, 1} and then #ω. Formally,

ψ1 = (¬$)U($ ∧
n∧
i=1

Xi(0 ∨ 1) ∧ Xn+1G#)

� ψ2 states that some string of length n, delimited between #’s before $ occurs also immediately
after $. Formally,

ψ2 = F(# ∧ Xn+1# ∧
n∧
i=1

(Xi0←→ G($→ Xi0) ∧ (Xi1←→ G($→ Xi1))))
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6.4 Solving the Decision Problems

In Section 6.2 we defined the two central decision problems for LTL: satisfiability and model-checking.
We are now ready to tackle them. We start with upper bounds.

Lemma 6.16. The LTL-satisfiability problem is in PSPACE.

Proof. An LTL formula ϕ is satisfiable iff L(Aϕ) 6= ∅, where Aϕ is the NBW obtained as per Theo-
rem 6.12. By Remark 6.13, we can construct Aϕ on the fly, and check emptiness in NL. Thus, the
overall complexity is coNPSPACE = PSPACE.

Lemma 6.17. The LTL model-checking problem is in PSPACE.

Proof. Given a Kripke structure K and an LTL formula ϕ, we have K |= ϕ iff L(K) ⊆ L(Aϕ), where Aϕ
is the NBW obtained as per Theorem 6.12.

A naive approach would be to construct Aϕ, then complement it and check whether L(K)∩L(Aϕ) =
∅. Unfortunately, this would incur a double-exponential blowup: one for LTL → NBW, and one for
complementing the NBW.

In order to circumvent this, we instead construct the NBW A¬ϕ for the negated formula. Note that

L(A¬ϕ) = L(Aϕ), but |¬ϕ| = |ϕ|+ 1, so the size of A¬ϕ is still 2O(n).
Thus, we can proceed with checking whether L(K) ∩ L(A¬ϕ) = ∅, which can be done in PSPACE

by constructing A¬ϕ on the fly.

Exercise 6.18. Show that in fact, A¬ϕ has the same number of states as Aϕ.

We now proceed to show a PSPACE lower bound. We start with model-checking.

Lemma 6.19 ([26]). The LTL model-checking problem is PSPACE-hard.

Proof. We reduce from the canonical problem of space-bounded TM acceptance. Let

L = {〈M,w, 1s〉 : M accepts w using at most s cells}

Given 〈M,w, 1s〉 as above, we will construct a Kripke structure K and a formula ϕ such that M accepts
w using at most s cells iff there exists a computation of K that satisfies ϕ. Thus, the reduction is in fact
to the complement of model checking (or alternatively, we can just output ¬ϕ and reduce from L).

Let M = 〈Q,Σ, δ, q0, qacc, qrej〉 be the given TM. Recall that a configuration of M is a string in
(Σ∪Q×Σ)∗, representing for each cell which letter it has, and whether it has the head (and what the state
is). The Kripke structure K is defined over the atomic propositions AP = {pσ : σ ∈ Σ∪Q×Σ}∪{`,a},
and is depicted in Figure 13.

The idea is that K generates sequences of configurations of length s. We then construct ϕ to state
the following properties:

1. The first sequence represents the initial configurations (i.e. ` ∧X(q0, w1) ∧∧si=2 X
2i−1wi).

2. Each configuration follows correctly from the previous configuration. This is done using disjunctions
over the possible transitions, and using 2s X operators to compare one entry of the configuration
with the corresponding entry on the next configuration.

3. qacc appears in some configuration, after which no more configurations appear (we should loop on
a).

It is not hard to write this formula explicitly (but too painful for these notes).

Finally, in order to show hardness of satisfiability, we can take the same approach as in Lemma 6.19.
Instead, we actually reduce MC to satisfiability (note that this gives an alternative proof of Lemma 6.17).

Lemma 6.20 ([26]). LTL model checking reduces in polynomial time to LTL non-satisfiability.

Proof. Given a Kripke structure K = 〈S,R,L , S0〉 and a formula ϕ over atomic propositions AP , we
construct an LTL formula Ψ over the atomic propositions AP ∪S (i.e. the atomic propositions of ϕ, and
the states of S) such that K 6|= ϕ iff Ψ is satisfiable.

The idea is that Ψ states the following: “there is a path in K whose computation does not satisfy ϕ”.
We construct Ψ = ψ1 ∧ ψ2 ∧ ψ3 ∧ ¬ϕ where
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Figure 13: The Kripke structure K.

1. ψ1 =
∨
s∈S0

s. That is, the initial state is in S0.

2. ψ2 = G
∧
s∈S(s→ X

∨
s′ :R(s,s′) s

′). That is, the transitions follow those of K.

3. ψ3 = G
∧
s∈S(s → ∧

p∈L (s) p ∧
∧
p/∈L (s) ¬p). That is, the atomic propositions in AP that hold in

each state s, correspond exactly to L (s).

We now have that Ψ is satisfiable iff there exists a description of an infinite path through K whose
corresponding computation does not satisfy ϕ, iff K 6|= ϕ.

We conclude with the following.

Theorem 6.21. The LTL satisfiability and model-checking problems are PSPACE complete.

6.5 Expressive power of LTL

In Theorem 6.12 we saw that every LTL formula has an equivalent NBW. In particular, L(ϕ) is ω-regular
for every ϕ. This begs the question – is the converse true? Is every ω-regular language LTL-definable?

Unfortunately, the answer is no. We prove this by describing a condition that is satisfied by every
LTL definable language, and then demonstrating ω-regular languages that do not satisfy it.

Definition 6.22 (non-counting). We say that a language L ⊆ Σω is
non-counting

non-counting if there exists n0 ≥ 0
such that for every n ≥ n0 and for every u, v ∈ Σ∗ and β ∈ Σω we have uvnβ ∈ L ⇐⇒ uvn+1β ∈ L.

Simply put, a language is non-counting if, when you repeat some finite infix enough times, then it
doesn’t matter how many times you repeat it.

A language is calledcounting counting if it is not non-counting.

Example 6.23. A couple of examples:

� The language L1 = {w ∈ {0, 1}ω : w has infinitely many 1’s} is non-counting. Indeed, take n0 = 1,
then for every u, v ∈ Σ∗ and β ∈ Σω we have that uvkβ ∈ L1 iff β has infinitely many 1’s, and in
particular this is true for k = n and k = n+ 1 for every n.

� The language L2 = (00)∗1ω is not non-counting: for every n0 ∈ N we have 02n01ω ∈ L2 but
02n0+11ω /∈ L2.

4

Theorem 6.24. Every LTL definable language is non counting.
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Proof. Let ϕ be an LTL formula over AP . We prove that L(ϕ) is non-counting by induction over the
structure of ϕ.

� If ϕ = true, set n0 = 0, the condition holds trivially.

� If ϕ = p for p ∈ AP , set n0 = 1, then for every u, v ∈ (2AP )? and β ∈ (2AP )ω, if u 6= ε, then
uvnβ ∈ L(ϕ) iff u starts with p, regardless of n. If u = ε (and v 6= ε, otherwise the claim is trivial),
then for every n ≥ 1, vnβ ∈ L(ϕ) iff v starts with p, iff vn+1β ∈ L(ϕ).

� If ϕ = ψ1∨ψ2, let n1, n2 be the thresholds defined for ψ1 and ψ2 by the induction hypothesis, then
for n0 = max{n1, n2} the claim follows easily.

� If ϕ = ¬ψ1, let n1 be the thresholds defined for ψ1 by the induction hypothesis, then n1 clearly
also works as a threshold for ϕ.

� If ϕ = Xψ, let n0 be the thresholds defined for ψ by the induction hypothesis. Let n1 = n0 + 1,
and let u, v ∈ (2AP )? and β ∈ (2AP )ω. Denote x = (uv)2 the second suffix of uv, then for
n ≥ n1 = n0 + 1 we have

uvnβ ∈ L(Xψ) ⇐⇒ uvvn−1β ∈ L(Xψ) ⇐⇒ xvn−1β ∈ L(ψ) ⇐⇒
⇐⇒ xvnβ ∈ L(ψ) ⇐⇒ uvvnβ ∈ L(Xψ) ⇐⇒ uvn+1β ∈ L(Xψ)

� ϕ = ψ1Uψ2, let n1, n2 be the thresholds defined for ψ1 and ψ2 by the induction hypothesis. take
n0 = max{n1, n2}+ 1, and let u, v ∈ (2AP )? and β ∈ (2AP )ω.

Claim 1: For all n ≥ n0, uvnβ |= ψ1Uψ2 =⇒ uvn+1β |= ψ1Uψ2.

If uvnβ |= ψ1Uψ2 then there exists j ≥ 0 such that (uvnβ)j |= ψ2 and for every 0 ≤ i < j,
(uvnβ)i |= ψ1. We now split to cases.

– If j ≤ |u|, then (uvnβ)j = ujvnβ, so by the induction hypothesis we have ujvn+1β |= ψ2 and
similarly, for every i ≤ j we have uivn+1β |= ψ1, so uvn+1β |= ψ1Uψ2.

– If j > |u|, then (uvn+1β)j+|v| |= ψ2. Also, for |u|+ |v| ≤ i < j + |v|, we have (uvn+1β)i |= ψ1.

Finally, for i < |u| + |v|, (uvvnβ)i |= ψ1, since (uvvn−1β)i |= ψ1 and by the induction
hypothesis. We again conclude that uvn+1β |= ψ1Uψ2.

Claim 2: For all n ≥ n0, uvn+1β |= ψ1Uψ2 =⇒ uvnβ |= ψ1Uψ2.

If uvn+1β |= ψ1Uψ2 then there exists j ≥ 0 such that (uvn+1β)j |= ψ2 and for every 0 ≤ i < j,
(uvn+1β)i |= ψ1. We now split to cases.

– If j ≤ |u|+|v|, then (uvn+1β)j = (uv)jvnβ, so by the induction hypothesis we have (uv)jvn−1β |=
ψ2 and similarly, for every i ≤ j we have (uv)ivn−1β |= ψ1, so uvvn−1β |= ψ1Uψ2.

– If j > |u| + |v|, then (uvnβ)j−|v| |= ψ2. Also, for |u| ≤ i < j − |v|, we have (uvnβ)i =
(uvn+1β)i+|v| |= ψ1.

Finally, for i < |u|, (uvnβ)i |= ψ1, since (uvn+1β)i = (u)ivn+1β |= ψ1 and by the induction
hypothesis. We again conclude that uvnβ |= ψ1Uψ2.

We are now ready to show an ω-regular language that is not LTL definable.

Example 6.25 (LTL non definable, ω-regular language). Let AP = {p}, and consider the language
L = {w ∈ (2{p})ω : p occurs in all even places}. Note that p may or may not occur in odd places.

It is very easy to construct an NBW with two states for L. Thus, L is ω-regular. However, L is
counting. Indeed, let n0 ∈ N, then {p}2n0 · (∅ · {p})ω ∈ L, but {p}2n0+1 · (∅ · {p})ω /∈ L. 4

7 S1S and Büchi’s Theorem

S1S is the monadic second order logic of one-successor, and it is equivalent in expressive power to NBWs.
But let’s start at the beginning.
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7.1 A Very Short Introduction to Logics

Recall that propositional logic, also called 0th-order logic, allows us to connect atomic propositions using
Boolean connectives (∨,∧,¬) and has relation symbols (predicates) such as (Love(you,me)) and possibly
other function symbols (apart from the Boolean connectives).

First-order logic extends propositional logic by allowing us to quantify elements in the domain. For
example, if our domain is N, we can consider the first-order logic of natural numbers with addition, given
by the signature 〈N, 0, 1,+〉 where the only relation is =, and the only function symbol is +, with the
standard semantics. This logic is called Presburger Arithmetic, and plays an important role in many CS
areas. In first order logic, we can write formulas such as ϕ(x, y) : ∃z . x + z = y. The “intuitive”
meaning of this formula is that ϕ(x, y) iff x < y. In this example, we used the quantification ∃z, where
z ranges over the domain N. The theory of the logic is the set of (fully quantified) sentences in the
logic that evaluate to true. For example, the sentence ∀x∃y . x + 1 = y is in the theory of Presburger
arithmetic.

Second-order logic extends quantification even further: instead of only quantifying over elements in
the domain, we can now quantify over relations. For example, we can say something like ∀R ⊆ N×N∀x ∈
N . R(x, x), which states that “every binary relation is reflexive”, which is of course false.

Monadic Second-order logic (MSO) restricts the above a bit, by allowing us to only quantify over
“unary” relations, i.e., sets. We can still say fairly interesting stuff, such as ∀X ⊆ N,∃x∀y(x ∈ X ∧ y ∈
X)→ x ≤ y, which states that every set has a minimal element.

This short introduction discusses logics in general. In our case, we want to discuss a logic called S1S
that expresses properties of infinite words. We remark that there are several reasons for studying this
logic:

� Historically, the connection between S1S and NBWs was the first time logic was connected to
automata, and tools from automata theory proved to be of great importance.

� Many problems can be reformulated in S1S, and thus we get an immediate solution for them.

� MSO is a more “logicians’ logic” than LTL, and it is worth knowing in order to read results
formulated from a logic perspective.

7.2 The logic S1S

The logicS1S S1S (monadic second order logic of one-successor) is an MSO with the signature 〈N, s,∈〉,
where s is thesuccessor successor function9 sx = x+ 1, and ∈ is the membership relation of elements in sets.

Example 7.1 (S1S Example). Before we formally define S1S, lets see an example. Consider the following
formula

ϕ(Pa) := ∃X.(∃z.z ∈ X) ∧ (∀y.y ∈ X → (y ∈ Pa ∧ sy ∈ X))

What does ϕ “mean”? Well, think of Pa ⊆ N as describing an infinite word over 2{a}, where Pa are
the indices of where a occurs, then ϕ(Pa) is true iff there exists some set X of “indices”, that contains
some index, and from that index and on, contains all indices (the operator “s” means “successor”, that
is, sy is “y + 1”), and X is contained in Pa.

Or, in simpler terms, ϕ(Pa) is true iff from some point on a is true in the corresponding word. 4

We are now ready to define S1S formally.

Definition 7.2 (S1S Syntax). The logical system S1S comprises the following elements.

�Variables Variables: 1st-order variables (denoted by small letters x, y, z, etc.) range over N.
2nd-order variables (denoted by capital letters X,Y, Z, etc.) range over subsets of N.

�Terms Terms: 1st-order variables are terms, and if t is a term then so is st.

�Atomic

formulas

Atomic formulas: expressions of the form t ∈ X where t is a term and X is a 2nd-order variable.

9observe that we write sx and not s(x), for convenience.
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� Formulas: S1S formulas are built up from atomic formulas using standard Boolean connectives and
the quantifier ∃ over 1st and 2nd-order variables.

Observe that the atomic formulas are all of the form ss · · · sx ∈ X for some 1st order variable x and
2nd order variable X.

We now want to define the semantics of S1S. We write formulas as ϕ(x1, . . . , xm, X1, . . . , Xn), where
x̄ = (x1, . . . , xm) are free (i.e., not bound by a quantifier) 1st-order variables and X̄ = (X1, . . . , Xn) are
free 2nd-order variables.

Let ā = (a1, . . . , am) ∈ Nm and P̄ = (P1, . . . , Pn) ∈ (2N)n (think of ā and P̄ as assignments to the
free variables), then we write (ā, P̄ ) |= ϕ(x̄, X̄) to mean “the assignment x̄ 7→ ā and P̄ 7→ X̄ satisfies ϕ”.

Definition 7.3 (S1S Semantics). The satisfaction relation (ā, P̄ ) |= ϕ is defined inductively on the
structure of ϕ as follows.

� (ā, P̄ ) |= ss · · · s︸ ︷︷ ︸
k

xi ∈ Xj iff ai + k ∈ Pj.

� (ā, P̄ ) |= ¬ϕ(x̄, X̄) iff (ā, P̄ ) 6|= ϕ(x̄, X̄).

� (ā, P̄ ) |= ψ1(x̄, X̄) ∨ ψ2(x̄, X̄) iff (ā, P̄ ) |= ψ1(x̄, X̄) or (ā, P̄ ) |= ψ2(x̄, X̄)

� (ā, P̄ ) |= ∃y.ϕ(x̄, y, X̄) iff there exists b ∈ N such that (ā, b, P̄ ) |= ϕ(x̄, y, X̄).

� (ā, P̄ ) |= ∃Z.ϕ(x̄, X̄, Z) iff there exists Q ⊆ N such that (ā, P̄ , Q) |= ϕ(x̄, X̄, Z).

Remark 7.4 (Universal Quantifier). Note that the syntax and semantics do not contain ∀. However,
we can express ∀ as ∀χ.ϕ(χ) := ¬∃χ.¬ϕ(χ).

Similarly, we will allow all standard Boolean shorthands (∧,→, etc.). 4

Some useful S1S constructs As we saw in Example 7.1, S1S is missing some basic expressions, such
as “<”. This is because we can define them ourselves. Once these are defined, we can use them as
shorthand.

� “X ⊆ Y ” := ∀x.x ∈ X → x ∈ Y

� “X = Y ” := X ⊆ Y ∧ Y ⊆ X

� “x = y” := ∀X.x ∈ X ←→ y ∈ X (cool, isn’t it? “there is no separating set”.)

� “x = 0” := ∀y.¬(x = sy).

� “x = 1” := x = s0 (more precisely, ∃y.y = 0 ∧ x = sy).

� “x ≤ y” := ∀X. (x ∈ X ∧ (∀z.z ∈ X → sz ∈ X))→ y ∈ X.

� “X is finite” := ∃x.∀y.(y ∈ X → y ≤ x).

7.3 S1S and ω-Languages

Let AP = {p1, . . . , pk} be a set of atomic propositions. For q ∈ AP , we associate a set Pq ⊆ N with

the infinite
characteris-

tic word

characteristic word [[Pq ]] ∈ (2{q})ω such that [[Pq ]] = σ1σ2 · · · with σi =

{
{q} i ∈ Pq
∅ i /∈ Pq

.

Similarly, we associate with P1, . . . , Pk a word [[P1, . . . , Pk ]] ∈ (2AP )ω where each letter is determined
by the corresponding sets. That is, [[P1, . . . , Pk ]] = τ1τ2 · · · where τi = {pj : i ∈ Pj}.

For uniformity, we associate with a constant a ∈ N the word of the singleton set [[ {a} ]].
Let ϕ(X1, . . . , Xn) be an S1S formula (with only 2nd order variables). We define thelanguage language of ϕ

to be L(ϕ(X̄)) = {[[ P̄ ]] : P |= ϕ(X̄)}.
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Example 7.5. Consider the LTL formula G(p→ Xq). We construct an equivalent S1S formula.

ϕ1(Xp, Xq) = ∀x, x ∈ Xp → sx ∈ Xq

Let’s try something harder: F(p ∧ X(¬qUp))

ϕ2(Xp, Xq) = ∃x. (x ∈ Xp ∧ ∃y. (sx ≤ y ∧ y ∈ Xp ∧ ∀z. (sx ≤ z ∧ z < y)→ ¬(z ∈ Xq)))

Note that this simple LTL formula yielded quite a long S1S formula. 4

7.4 Decidability of S1S

Given an S1S formula ϕ(X̄), can we determine whether it is satisfiable? Or whether it is valid? Or
whether two formulas are equivalent? A-priori, these questions are quite difficult (indeed, try coming up
with decision procedures!).

In 1962, Büchi [2] showed that S1S is decidable, by translating it to NBW. The proof, as it happens,
is quite simple. The greatness in this work is the idea of translating a logic into a computational model.
He also showed that the logic is exactly as expressive as NBW, by showing the inverse translation.

We say that an S1S formula ϕ(X̄) is equivalent to an NBW A iff L(A) = L(ϕ).
We start with the simpler direction.

Theorem 7.6 (Büchi). Let AP = {p1, . . . , pk}. For every NBW A over alphabet 2AP , there exists an
equivalent S1S formula ϕ(X̄). Moreover, we can effectively construct ϕ from A.

Proof. The proof is fairly straightforward: we construct a formula ϕ(X̄) that, given P̄ = (P1, . . . , Pk),
intuitively states that “there is an accepting run of A on [[ P̄ ]]”.

Let A = 〈Q, 2AP , δ, Q0, α〉, where Q = {q1, . . . , qn}. We want to encode a run ρ = ρ0, ρ1, . . . ∈ Qω of
A using n sets Y1, . . . , Yn such that for all i ∈ N we have i ∈ Yj iff ρi = qj .

In order to obtain such an encoding, we formulate certain properties of a run. First, each index has
a unique state, that is the sets Y1, . . . , Yn form a partition of N. We thus define

Partition(Y1, . . . , Yn) := ∀x.
(

n∨
i=1

x ∈ Yi
)
∧ ¬

∃y.∨
i 6=j

y ∈ Yi ∧ y ∈ Yj


Next, each state follows from the previous state according to the transition function. Given a letter

σ ∈ 2AP and a (1st-order) variable x, we use the shorthand

x ∈ Xσ :=
∧
pj∈σ

x ∈ Pj ∧
∧
pj /∈σ
¬(x ∈ Pj)

to denote that x represents exactly the atomic propositions that correspond to σ.
Then, we define

Transitions(Y1, . . . , Yn) := ∀x.
∨

qi ∈ Q, σ ∈ 2AP

qj ∈ δ(qi, σ)

x ∈ Yi ∧ x ∈ Xσ ∧ sx ∈ Yj

Finally, we define

Accepting(Y1, . . . , Yn) := ∀x.∃y.(x ≤ y ∧
∨
qi∈α

y ∈ Yi)

We can now define the entire formula

ϕA(X1, . . . , Xn) := ∃Y1, . . . , Yn.


Partition(Y1, . . . , Yn)

∧ ∨
qi∈Q0

0 ∈ Yi
∧ Transitions(Y1, . . . , Yn)
∧ Accepting(Y1, . . . , Yn)


The correctness of this construction is easy to verify, by looking at each component of the formula.
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Theorem 7.7 (Also Büchi). Let AP = {p1, . . . , pk}. For every S1S formula ϕ(x̄, X̄) there exists an
equivalent10 NBW A over alphabet 2AP . Moreover, we can effectively construct A from ϕ.

Proof. The proof of this theorem is also fairly sensible, but it does involve some thought. We construct
A by induction over the structure of ϕ.

� Atomic formulas: If ϕ(x̄, X̄) = ss · · · s︸ ︷︷ ︸
k

xi ∈ Xj , we build A as follows: once it sees a letter σn ∈ 2AP

such that pi ∈ σn, it checks that pj ∈ σk+n, by waiting for k steps (see Figure 14).

In addition, we check that pi is seen exactly once.

Figure 14: Translation of atomic formula. Here, xi corresponds to p1 and Xj to p2.

� Disjunction: If ϕ(x̄, X̄) = ψ1(x̄, X̄) ∨ ψ2(x̄, X̄), we simply take the union of the respective NBWs
for ψ1 and ψ2, as per Theorem 3.6.

� Negation: If ϕ(x̄, X̄) = ¬ψ(x̄, X̄), we take the complement NBW of ψ, as per Theorem 3.23.

Notice that while this step is now easy, Büchi had to work hard to prove closure under complement!

� Second-order existential quantification: If ϕ(x̄, X̄) = ∃Z.ψ(x̄, X̄, Z), we proceed as follows. Let
B = 〈Q, 2AP∪{pk+1}, δ, Q0, α〉 be the NBW equivalent to ψ(x̄, X̄, Z), as per the induction hypothesis.
We are going to “project” the Z coordinate away (pk+1), in a nondeterministic manner.

Formally, we define A = 〈Q, 2AP , δ′, Q0, α〉 by setting, for every state q ∈ Q and σ ∈ 2AP ,
δ′(q, σ) = δ(q, σ0) ∪ δ(q, σ1) where σ0 and σ1 are obtained by taking σ without and with pk+1,
respectively11.

Effectively, A “guesses” nondeterministically, which entries are in Z. Clearly A accepts a word iff
there exists a set Z for which B accepts the corresponding word combined with the Z coordinate.
See Figure 15.

� First-order existential quantification: This is fairly similar to the previous construction, only we
also need to make sure we guess exactly one entry to have pk+1. In order to achieve this, we take
two copies of B, as follows.

Let B = 〈Q, 2AP∪{pk+1}, δ, Q0, α〉 be the NBW equivalent to ψ(x̄, z, X̄), as per the induction hy-
pothesis. We are going to “project” the z coordinate away (call it again pk+1).

We define A = 〈Q×{0, 1}, 2AP , δ′, Q0×{0}, α×{1}〉 by setting, for every state q ∈ Q and σ ∈ 2AP ,
δ′((q, 0), σ) = (δ(q, σ0), 0) ∪ (δ(q, σ1), 1) where σ0 and σ1 are obtained by taking σ without and
with pk+1, respectively. In the second copy, we behave exactly like B, without guessing additional
pk+1 entries. That is, δ′((q, 1), σ) = (δ(q, σ0), 1).

We now have that A accepts a word iff there exists a singleton z for which B accepts the corre-
sponding word combined with the z coordinate.

10Notice that we allow ϕ to involve 1st-order variables. In this case, equivalence means that we also check that words
only have a single index corresponding to those variables.

11We could have just taken σ and σ ∪ {pk+1}, but we want ot emphasize that we change alphabet
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Figure 15: Translation of existential quantifier. Here, Z corresponds to p2.

Remark 7.8 (S1S and NBW translation blowup). Observe that the construction in Theorem 7.6, given
an NBW of size n, yields a formula of size polynomial in n.

Conversely, the construction in Theorem 7.7, given a formula of size n, could potentially complement
and project repeatedly (which is in fact quite common, when there are alternating quantifiers ∃x∀y∃z . . .),
in which case the blowup would be a tower of exponents 222·

n︸ ︷︷ ︸
n

(a.k.a O(my god)).

Unfortunately, the latter is, in a sense, optimal. Indeed, Meyer [16] proved in 1975 that S1S satisfia-
bility is NON-ELEMENTARY, meaning that the complexity cannot be bounded by a tower of exponents
of a fixed height. 4

8 Games Motivation – LTL Synthesis

8.1 Model Checking Reactive Programs

Recall that in LTL Model checking, we are given a formula ϕ and a structure K, and we ask whether
K |= ϕ. This makes sense because our program is modeled as K, and we want all its possible behaviours
to satisfy ϕ. Why did we choose to model programs using a nondeterministic structure? Real programs
are deterministic, or probabilistic. Well, there are several reasons. One reason is that sometimes we
abstract away parts of the program, such as conditions, and obtain something nondeterministic. But
why would a program even have conditions? It needs them only if there is something inherently unknown
about the behaviour. This unknown element is simply the input.

Indeed, programs don’t just hang around, doing mindless computations. They typically interact with
users, sensors, data streams, etc. These can effect the execution of the program, and we need to model
it somehow, Hence – nondeterminism.

A bit more formally, suppose our atomic propositions are partitioned into inputs I and outputs O.
Then, a letter over 2I∪O describes the inputs for the system, and it’s current outputs (in our previous
framework, we essentially only had outputs).

Then, a program (which we will later call a reactive system) reads an input, outputs something, moves
on to the next state, and repeats the process (see Figure 16(a)). How does this fit into our previous
framework? Suppose we have such a program, and a specification ϕ over 2I∪O, then we say that the
program realizes the specification if for every sequence of inputs, the sequence of outputs induced by
the program satisfies the specification. And indeed, this fits really well into Kripke structures: Given a
program P , we obtain a Kripke structure KP by nondeterministically choosing an input i ⊆ I, and for
each input, marking the state we reach with the relevant output o ⊆ O. Then, KP |= ϕ iff for every
input sequence, if we combine it with the output sequence associated with it by P , we get a computation
that satisfies ϕ (see Figure 16)

Checking whether a program we wrote satisfies the specification (i.e., is bug-free) is great. But what
happens when we find a bug? We have to fix the bug, and recheck. And as you know, this check can be
expensive. Wouldn’t it be great, if we could just take our specifications, and from them automatically
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(a) A transducer (program) satisfying G(r ←→ g).

¬r,¬g r, g

(b) The Kripke structure obtained from Figure 16(a).

Figure 16: Translating a program to a Kripke structure.

generate a program that satisfies the specifications? That is, completely get rid of human programming?
It certainly would.

The first thing that comes to mind toward this effort is LTL satisfiability – given an LTL specification
ϕ, we can check whether it’s satisfiable, and if it is, output a satisfying computation. Is this enough?
Not really. A satisfying computation can be thought of as a sequence of inputs and outputs that satisfies
the formula. But it’s not a program, since the inputs are controlled. What we want is a program that
reacts to an uncontrollable input.

Solving this problem opens a wonderful field of study, relating to game theory, which we now turn to
explore.

8.2 LTL Synthesis

We will start with an example for LTL synthesis.

Example 8.1. Let I = {r} and O = {g} (where we think of r as “request” and g as “grant”), and
consider the specification G(r ←→ g). Can we find a “good” program for this formula? (if you’re
re-reading this, then “good” simply means “realizing”).

Sure (we’ve already seen that in Figure 16), the program works as follows: for every sequence of inputs
x ∈ (2I)?, if x ends with r, then the output will be g, and if it ends with ¬r (or ∅, in set terminology)
the output will be ¬g (or ∅, in set terminology).

How about the specification G(r → g)? Well, the same program as above works, but we can also just
have a program that always outputs g. 4

The formal setting we consider is the following: the system controls the outputs O, whereas the
environment controls the inputs I. Then, the system tries to make sure that every sequence of inputs
is matched with a sequence of outputs such that the specification ϕ is satisfied. This setting is thus
sort of a “game” between the system and the environment, where the system wins if the specification is
satisfied. Then, a winning strategy for the system describes a program.

Consider two finite sets I and O of input and output signals, respectively. For two words x =
i0 · i1 · i2 · · · ∈ (2I)ω and y = o0 · o1 · o2 · · · ∈ (2I)ω, we definex⊗ y x⊗ y as the word in (2I∪O)ω obtained by
merging x and y. That is, x⊗ y = (i0 ∪ o0) · (i1 ∪ o1) · (i2 ∪ o2) · · · . The definition is similar for finite x
and y of the same length. For a word w ∈ (2I∪O)ω, we use w|I to denote the projection of w on I. In
particular, (x⊗ y)|I = x.

Astrategy strategy is a function f : (2I)+ → 2O. Intuitively, f models the interaction of the system that

generates in each moment in time a letter in 2O with an environment that generates letters in 2I . For an
input sequence x = i0 · i1 · i2 · · · ∈ (2I)ω, we use f(x) to denote the output sequence f(i0) ·f(i0 · i1) ·f(i0 ·
i1 · i2) · · · ∈ (2O)ω. Then, x⊗ f(x) ∈ (2I∪O)ω is the computation of f on x. Note that the environment
“initiates” the interaction, by inputting i0.

An arbitrary strategy can be thought of as an infinite tree, which specifies what to output after every
finite input sequence. These, however, cannot generally be finitely described. Obviously we care about
things we can describe, and so we restrict the discussion (for now) to finite strategies, represented by
transducers, which are essentially deterministic automata with outputs.

An
I/O-transducer

I/O-transducer is T = 〈I,O, S, s0,M, τ〉, where S is a finite set of states, s0 ∈ S is an initial state,

M : S × 2I → S is a transition function, and τ : S → 2O is a labelling function. For x = i0 · i1 · i2 · · · ∈
(2I)∗, let M∗(x) be the state in S that T reaches after reading x. That is, M∗(ε) = s0 and for every
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j ≥ 0, we have that M∗(i0 · i1 · i2 · · · ij) = M(M∗(i0 · i1 · i2 · · · ij−1), ij). Then, T induces the strategy
fT : (2I)+ → 2O, where for every x ∈ (2I)+, we have that fT (x) = τ(M∗(x)). We use T (x) and x⊗T (x)
to denote the output sequence and the computation of T on x, respectively, and talk about T realizing
a specification, referring to the strategy fT .

Consider an LTL specification ϕ over 2I∪O. We say that the transducer Trealizes realizes ϕ if for every

x ∈ (2I)ω, the induced computation x ⊗ T (x) satisfies ϕ. If such a transducer exists, we say ϕ is
realizable. The two central problems we study are the following:
LTL Realizability:

Given: an LTL formula ϕ over 2I∪O

Question: Is ϕ realizable?

LTL Synthesis:

Given: an LTL formula ϕ over 2I∪O

Question: If ϕ is realizable, output a realizing transducer.

Let’s try to solve these problems (we can’t just yet, but let’s see where we get stuck). Our input is
just an LTL formula ϕ over 2I∪O. It’s quite natural to convert is to an NBW Aϕ as per Theorem 6.12.
It’s not quite clear how to proceed, though. We need to decide if there exists a strategy, such that given
a word x ∈ (2I)ω, outputs something “letter by letter”, such that the induced word has an accepting
run through Aϕ. One of the annoying aspects here is that Aϕ is itself nondeterministic, which adds
another complicating layer to everything. So let’s circumvent this for now. By Theorem 4.19, we can
determinize Aϕ to obtain an equivalent DPW Dϕ. So now we want to decide if there exists a strategy,
such that given a word x ∈ (2I)ω, outputs something “letter by letter”, such that the induced (unique)
run through Dϕ is accepting.

But the latter doesn’t really fit any of the algorithms we have. Intuitively, we have the following
setting: at each point, we get some input i ∈ 2I , and we need to choose some output o ∈ 2O, and so on,
such that for every i0 there exists o0 such that for every i1 there exists o1 such that... the computation
(i0 ∪ o0), (i1 ∪ o1), . . . is accepted by Dϕ.

This already starts to feel like a game: the environment (input player) chooses an input, and the
system (the output player) needs to respond with an output, such that some winning condition is met.

We are now well motivated to start from the beginning.

9 Games – The Basics

The games we consider in this course are 2-player games played over a finite arena. The players will
usually be called Player 0 and Player 1.

A lot of my notes and examples are taken from the excellent survey [14].

Definition 9.1 (Game). Agame game is G = 〈V, V0, V1, E,Win〉 where

� V is a finite set of vertices,

� V0 and V1 form a partition of V , denote the sets of Player 0 and Player 1, respectively,

� E ⊆ V × V is a total edge relation (i.e. every state has at least one outgoing edge),

� Win ⊆ V ω is a winning condition.

We refer to 〈V, V0, V1, E〉 as thearena arena of the game.
Given a game G = 〈V, V0, V1, E,Win〉, astrategy strategy for Player i ∈ {0, 1} is a function f : V ∗Vi → V such

that for every u ∈ V ∗ and v ∈ Vi it holds that (v, f(uv)) ∈ E.
A strategy f is calledmemoryless memoryless (a.k.a. “positional”, and sometimes “sequential”) if f only depends

on the current state. That is, f(uv) = f(v) for every u ∈ V ∗ and v ∈ Vi (for the corresponding Player
i).

Aplay play in G is a sequence π = v0, v1, . . . ∈ V ω such that (vi, vi+1) ∈ E for all i ≥ 0. (We similarly
define a finite play). A play π iswinning winning for Player 0 if π ∈ Win. Otherwise, π is winning for Player 1
(we also say that a play is losing for Player i if it is winning for Player 1− i).
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Fix strategies f, g for players 0 and 1, then for every initial vertex v0 ∈ V , f and g uniquely determine
a play Playv0(f, g) in G, by starting from v0 and proceeding according to the strategies. A play π is

consistent consistent with strategy f for Player i if there exists a strategy g for Player (1 − i) such that π =
Playv0(f, g).

A strategy f is winning for Player i from vertex v0 if for every strategy g of Player 1− i it holds that
Playv0(f, g) is winning for Player i. We say that Player 0wins wins from v0 if she has a winning strategy
from v0 (and similarly for Player 1).12

Thewinning

region

winning region of Player i ∈ {0, 1}, denoted Wini ⊆ V , is the set of states from which Player i
has a winning strategy.

Example 9.2. Consider the game in Figure 17. Suppose the goal for Player 0 is to reach either v4 or
v5. That is, Win contains all plays that visit v4 or v5 at some point.

Figure 17: A game. Circle/Square vertices belong to Player 0/1 respectively.

Obviously Player 0 wins from v4 and from v5, and even with a memoryless strategy. Player 0 also
wins from v8, by forcing the play to reach v5 in the next step (still, using a memoryless strategy).

From v0, however, Player 1 wins, with the following memoryless strategy: from v0 go to v1, and from
v2 go to v1 (and the rest of the vertices can have any arbitrary strategy, as they won’t be reached). 4

Note that a-priori, it could be that for some vertex v, neither player has a winning strategy from v.
We say that a game isdetermined determined if Win0 ∪Win1 = V . That is, if from each state, either Player 0 or
Player 1 has a winning strategy. If a game is determined and from every state in Wini, Player i has a
memoryless winning strategy, we say that the game is memoryless-determined.

Example 9.3 (Determinacy). It may seem that any reasonable game (or indeed, any game) is deter-
mined. To illustrate a non-determined game, consider rock-paper-scissors: from the “initial” state, there
is no strategy that is guaranteed to win for either player.

However, this example is not in the spirit of our games, since this game does not have “perfect-
information”: it is not turn based, so e.g. Player 1 doesn’t know what Player 0 is going to play in the
first turn. 4

It turns out that determinacy of the games we study is a complicated issue. Martin [13] proved that
any game whose winning condition is a Borel set is determined. Coming up with a non-determined game
in our framework is non-trivial (and depends on which axioms you allow – if you assume the Axiom of
Determinacy, then all our games are determined. If you assume the Axiom of Choice, you can build a
non-determined game). Gowers has an excellent entry on this in his Blog [6].

The fundamental problem about games is solving them:
Game Solving:

12Note that a-priori, it could be that neither player wins from a certain vertex.
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Given: a game G
Question: Compute Win0 and Win1.

In addition, we will usually want respective winning strategies from each state. Naturally, the actual
algorithms would depend on the type of winning conditions we use.

10 Reachability and Safety Games

10.1 Reachability Games

The first, and simplest, type of game we consider is reachability games. Consider an arena 〈V, V0, V1, E〉,
and let R ⊆ V . The

reachability

reachability objective is

Reach(R) = {π ∈ V ω : ∃i ≥ 0, πi ∈ R}

that is, the set of plays that visit R at some point. The corresponding reachability game is G =
〈V, V0, V1, E,Reach(R)〉.

Note that for reachability objective R, Player 1 is winning if it can keep the play in V \R forever.

Example 10.1. Consider the game described in Figure 17, with the reachability objective Reach(R)
for R = {v4, v5}. It’s quite intuitive how to solve this game. First, {v4, v5} are clearly in Win0. Then,
look at v3, for example: v3 ∈ V0, so Player 0 can choose to take the edge (v3, v4), and thus win from v3.
Similarly, v8 is winning by going to v4. So {v3, v4, v5, v8} are in Win0. Now, v7 can reach v8, so it’s also
winning for Player 0.

Interestingly, v6 is also winning for Player 0, even though v6 ∈ V1. This is because all the edges from
v6 get to Win0. So far we have {v3, v4, v5, v6, v8} ⊆Win0. Is anything else winning for Player 0?

Doesn’t seem so. In fact, as we reasoned in Example 9.2, Player 1 wins from {v0, v1, v2}.
So we discovered that this game is determined, with Win0 = {v3, v4, v5, v6, v8} and Win1 = {v0, v1, v2}.

4

10.2 Attractors, Traps, and Subgames

In order to solve reachability games, we introduce some tools that will be very useful later. The first is
the attractor.

Definition 10.2. Consider an arena 〈V, V0, V1, E〉. Let S ⊆ V be a set of vertices and i ∈ {0, 1} be a
player. DefineForcei(S)

Forcei(S) = {v ∈ Vi : ∃v′ ∈ S, (v, v′) ∈ E} ∪ {v ∈ V1−i : ∀v′ ∈ V such that (v, v′) ∈ E, v′ ∈ S}.

Equivalently,

Forcei(S) = {v ∈ Vi : v′ ∈ S for some succesor of v} ∪ {v ∈ V1−i : v′ ∈ S for all succesors of v}

Theattractor attractor for Player i to S is defined inductively as follows.

� Attr0i (S) = S,

� For all n ≥ 0, Attrn+1
i (S) = Attrni (S) ∪ Forcei(Attr

n
i (S)), and

� Attri(S) =
⋃
n∈N Attrni (S).

Intuitively, Attri(S) is the set of vertices from which Player i can force the play to reach S in finite
time.

Remark 10.3. Definition 10.2 suggests an algorithm for computing Attri(S), by inductively constructing
Attrni (S). If the arena is finite, then this process must converge within at most |V | iterations. That is,

Attr
|V |
i (S) = Attr(S).
In particular, Attri(S) can be computed by traversing each edge in E at most once. 4
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Figure 18: Attractor computation for Attr0({v4, v5}).

Example 10.4. Let’s see an example of computing attractors, on the reachability game from Exam-
ple 10.1 (in Figure 17). The computation is depicted in Figure 18. The computation proceeds as follows:

Attr00({v4, v5}) = {v4, v5}
Attr10({v4, v5}) = {v4, v5} ∪ {v3, v8}
Attr20({v4, v5}) = {v4, v5, v3, v8} ∪ {v7}
Attr30({v4, v5}) = {v4, v5, v3, v7, v8} ∪ {v6}
Attr40({v4, v5}) = {v4, v5, v3, v7, v6, v8}

After 4 iterations, no further vertices are added, so we have completed computing the attractor.
Note that it just so happens that Attr0({v4, v5}) = Win0. Coincidence? 4

In fact, we can even extract strategies from this computation, as we now show.

Lemma 10.5. Consider an arena 〈V, V0, V1, E〉. Let S ⊆ V be a set of vertices and i ∈ {0, 1} be a
player.

� There is a memoryless strategy σ for Player i such that every play from Attri(S) that is consistent
with σ reaches S.

Moreover, if v ∈ Attrni (S) then the above play reaches S within at most n steps.

� There is a memoryless strategy τ for Player 1 − i such that every play from V \ Attri(S) that is
consistent with τ remains within V \ Attri(S).

Proof. For every v ∈ Attri(S), let δ(v) = min{n ∈ N : v ∈ Attrni (S)}. Intuitively, δ(v) is the “distance”
of v from S. In particular, δ(v) = 0 iff v ∈ S. Define δ(v) =∞ for v /∈ Attri(S).

Observe that for every v ∈ Vi such that ∞ > δ(v) > 0 there exists v′ such that (v, v′) ∈ E and
δ(v′) < δ(v), and for every v ∈ V1−i such that ∞ > δ(v) > 0, it holds that δ(v′) < δ(v) for every v′ such
that (v, v′) ∈ E (this follows immediately from the definition of the attractor).
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We define the memoryless strategy σ for Player i as follows. For every v ∈ Attri(S) ∩ Vi, if ∞ >
δ(v) > 0 let σ(v) = v′ where v′ is such that δ(v′) < δ(v) (which exists by the above). If δ(v) ∈ {0,∞}
then σ(v) can be an arbitrary neighbor.

Consider a play π = π0, π1, . . . that is consistent with σ, where π0 ∈ Attrni (S) for some n ∈ N. Thus,
δ(π0) ≤ n, and it can be easily shown by induction that δ(πj) ≤ n − j until δ(πj) = 0 for some j ≤ n,
at which point πj ∈ S.

For the second part of the lemma, we define the memoryless strategy τ for Player 1 − i as follows.
For every v ∈ V1−i \ Attri(S), by definition we have that δ(v) = ∞. Still by definition, there exists
v′ ∈ V \ Attri(S) with (v, v′) ∈ E such that δ(v′) =∞. We define τ(v) = v′.

Further note that for every v ∈ Vi \ Attri(S) we have that δ(v) = ∞ and for every v′ such that
(v, v′) ∈ E we still have δ(v′) = ∞. Consequently, it is easy to show that for every play π that is
consistent with τ and such that π0 ∈ V \Attri(S) it holds that δ(πj) =∞ for all j ≥ 0, which concludes
the claim.

Observe that for reachability games, we essentially want to compute the attractor. Thus, as an
immediate corollary of Remark 10.3 and Lemma 10.5, we have the following.

Theorem 10.6. Reachability games are memoryless determined, and can be solved in polynomial time.

Before proceeding, observe that, as we have seen, Player 1 − i can force the play to remain in
V \ Attri(S) indefinitely. This motivates the following definition, which is a dual of attractors.

Definition 10.7 (Trap). Let 〈V, V0, V1, E〉 be an arena and let i ∈ {0, 1} be a player. A set S ⊆ V is a
trap trap for Player i if:

� For every v ∈ S ∩ Vi and for every (v, v′) ∈ E we have v′ ∈ S (i.e., all the successors of v are in
S), and

� For every v ∈ S ∩ V1−i there exists v′ ∈ S such that (v, v′) ∈ E (i.e., there exists a successor of v
in S).

The proof of Lemma 10.5 shows that Player 1 − i has a memoryless strategy that keeps the play in
a Player i-trap, once it reaches the trap.

The last definition we want is that of asub-game sub-game, which is, as the name suggests, a game that is
played on the subset of the arena.

Definition 10.8 (Sub-Game). Let G = 〈V, V0, V1, E,Win〉 be a game. A set S ⊆ V induces a valid
sub-game G �S if for every v ∈ S there exists v′ ∈ S such that (v, v′) ∈ E. Then,

G �S= 〈S, V0 ∩ S, V1 ∩ S,E ∩ (S × S),Win ∩ Sω〉

Finally, we observe that every trap induces a valid subgame. This will be useful later on.

10.3 Safety Games

The next winning condition we consider is safety. Intuitively, in a safety game Player 0 tries to keep the
play within some given set. Consider an arena 〈V, V0, V1, E〉, and let S ⊆ V . Thesafety safety objective is

Safety(S) = {π ∈ V ω : ∀i ≥ 0, πi ∈ S}

The corresponding safety game is G = 〈V, V0, V1, E,Safety(S)〉.
Safety and reachability are dual conditions. Indeed, it is easy to see that Player 0 wins a safety

game G = 〈V, V0, V1, E,Safety(S)〉 from vertex v0 iff Player 0 loses in the reachability game G̃ =

〈V, V1, V0, E,Reach(V \ S)〉. Indeed, Player 0 in G̃ controls the vertices V1, so it essentially mimics
Player 1 in G, so we essentially require that Player 1 in G cannot force the game to reach V \ S. Thus,
Theorem 10.6 immediately gives us the following:

Theorem 10.9. Safety games are memoryless determined, and can be solved in polynomial time.
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11 Büchi Games

Let’s try to tackle Büchi games. There, the goal of Player 0 is to reach a certain set infinitely often.
The main conceptual difference from reachability games lies in that for reachability games, if Player

0 wins, then she wins after some finite prefix, after which the rest doesn’t matter. In Büchi games, in
order to win she must force the play to revisit α over and over, and no finite prefix will determine the
outcome.

Formally, consider an arena 〈V, V0, V1, E〉, and let α ⊆ V . TheBüchi Büchi objective is

Büchi(α) = {π ∈ V ω : inf(π) ∩ α 6= ∅}

The corresponding Büchi game is G = 〈V, V0, V1, E,Büchi(α)〉.

Example 11.1. Consider the game in Figure 19, where α = {v4, v6}.

Figure 19: A Büchi game

Let’s try to find the winning sets of the players (yes, they’re already marked with pink and blue).
Consider Attr0(α) = {v3, v4, v6, v7}, and recall that V \ Attr0(α) = {v0, v1, v2, v5, v8} is a trap for Player
0, meaning Player 0 cannot force the play to escape it. In particular, she cannot reach α, not even once.
Thus, we immediately have that V \ Attr0(α) ⊆Win1.

Now let’s look at v4. It’s in α, so it may seem like a good place to try and reach. But since it’s in
V1, then Player 1 can choose to move it to v8, from which Player 0 is losing. Thus, v4 ∈ Win1. More
precisely, we have v4 ∈ Force1(V \ Attr0(α)).

So we have Win0 = {v3, v6, v7}, but we didn’t quite prove it. Let’s try to argue why this is the case.
From {v3, v6, v7} Player 0 can force the game to reach v6, but then from v6 Player 0 can again force
{v3, v6, v7}, and so on forever. 4

The solution of Büchi games roughly follows the lines of Example 11.1, but it’s slightly more elaborate.
The basic construct we use for Büchi games is the recurrence construction.

Definition 11.2 (Recurrence, Avoidance). Let 〈V, V0, V1, E〉 be an arena, i ∈ {0, 1} be a player, and
S ⊆ V be a set of vertices. Therecurrence recurrence set for Player i to S is defined inductively as follows:

� Recur0i (S) = S,

� For every n ≥ 0, Avoidn1−i(S) = V \ Attri(Recurni (S)), and

� For every n ≥ 0, Recurn+1
i (S) = Recurni (S) \ Force1−i(Avoid

n
1−i(S)).

We then define Recuri(S) =
⋂
n∈N Recurni (S) and Avoid1−i(S) =

⋃
n∈N Avoidn1−i(S).
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Since the sets Recurni (S) form a decreasing chain, there exists m ≤ |V | such that Recurmi (S) =
Recuri(S), and thus we can compute these sets in polynomial time (note that the operations in the
inductive definition can be applied in polynomial time). Similarly, the sets Avoidn1−i(S) form an increasing
chain, and the sets converge together.

Intuitively, Recurni (S) is the set of vertices in S from which Player i can force the play to reach S
again at least n times. Thus, Recuri(S) is the set of vertices from which Player i can reach S infinitely
often. It follows that the winning vertices for Player 0 in a Büchi game is Attr0(Recur0(α)). This is
formalized in the following.

Lemma 11.3. Consider a Büchi game G = 〈V, V0, V1, E,Büchi(α)〉, then Win0 = Attr0(Recur0(α)), and
Win1 = V \ Attr0(Recur0(α)).

In addition, there are memoryless winning strategies for both players (from their respective winning
regions).

Proof. Define X = Attr0(Recur0(α)), we will show that X ⊆ Win0 and V \ X ⊆ Win1, and since
Win0∩Win1 = ∅, this will conclude the proof. Recall that Recur0(α) = Recurm0 (α) for some m. Similarly,
Avoid1(α) = Avoidm1 (α) (since the sets converge together).

We start with Player 0, and construct a winning memoryless strategy from X. Consider a vertex v ∈
Recur0(α), then by the inductive construction we have v ∈ Recur0(α) \ Force1(Avoid1(α)). Accordingly:

1. If v ∈ V0, then there exists a successor v′ of v such that v′ /∈ Avoid1(α). But Avoid1(α) =
V \ Attr0(Recur0(α)), and hence v′ ∈ Attr0(Recur0(α)) = X.

2. If v ∈ V1, then by a similar reasoning, we have v′ ∈ X for every successor v′ of v.

We can now construct a memoryless strategy σ for Player 0 in X. Let σ′ be the (memoryless) attractor
strategy for Player 0 that ensures reaching Recur0(α) from Attr0(Recur0(α)), as per Lemma 10.5. We
then define for every v ∈ V0:

σ(v) =


σ′(v) v ∈ Attr0(Recur0(α)) \ Recur0(α),

v′ v ∈ Recur0(α), where v′ ∈ X as per Item 1 above,

v′′ otherwise, where v′′ is some arbitrary successor.

We claim that σ is winning for Player 0 from every v ∈ X. Indeed, let π = π0, π1, . . . be a play
consistent with σ with π0 ∈ X. First, it is easy to show by induction that πn ∈ Attr0(Recur0(α)) for
every n ≥ 0 (using the construction of σ, and Property 2 above). Next, since σ′ guarantees that a
play visits Recur0(α) within at most |V | steps from any vertex v ∈ Attr0(Recur0(α)) \ Recur0(α). Since
Recur0(α) ⊆ α, this guarantees the the play is winning for Player 0.

We now turn to Player 1. Observe that V \ X = Avoid1(α). Observe that Avoid1(α) is a trap for
Player 0, hence, Player 1 can force the play within it. However, it is not quite enough, since Avoid1(α)
may contain vertices in α. Thus, we also need to make sure that Player 1 can force the play to eventually
stay out of α. This is done as follows.

Recall that Avoid1(α) = Avoidm1 (α) for some m ≤ |V |. For every v ∈ Avoid1(α), define δ(v) = min{k :
v ∈ Avoidk1(α)}, then we have δ(v) ≤ |V | for every v ∈ Avoid1(α).

Furthermore, observe that Avoid0
1(α) = V \ Attr0(α). In particular, Avoid0

1(α) is a trap for Player
0 that is disjoint13 from α, so Player 1 has a memoryless strategy τ0 that can keep the play within
Avoid0

1(α).
Next, consider a vertex v ∈ Avoid1(α) with δ(v) = k > 0, then v /∈ Attr0(Recurk0(α)). We now show

some properties of v.

1. If v ∈ V1 then there exists a successor v′ of v such that δ(v′) ≤ δ(v), and if v ∈ α then the inequality
is strict.

Indeed, assume by way of contradiction that every successor v′ of v satisfies δ(v′) > δ(v), and

hence v′ /∈ Avoid
δ(v)
1 (α) (since v′ enters “later” than v). Thus, every successor v′ satisfies v′ ∈

Attr0(Recur
δ(v)
0 )(α). But then v ∈ Force0(Attr0(Recur

δ(v)
0 (α))) ⊆ Attr0(Recur

δ(v)
0 (α)) (since the force

13observe that Avoid01(α) 6= ∅, otherwise Win0 = V and we’re done.
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of the attractor is contained in the attractor). But this is a contradiction, since v ∈ Avoid
δ(v)
1 (α) =

V \ Attr0(Recur
δ(v)
0 (α)).

Intuitively, the argument above simply says that if v entered Avoid1(α) at iteration δ(v), then at
least one of its neighbors was already previously in Avoid1(α) before. Otherwise, v could not have
gotten in.

Now, assume that in addition v ∈ α. Since v ∈ Avoid
δ(v)
1 (α) = V \Attr0(Recur

δ(v)
0 (α)), then in par-

ticular v /∈ Recur
δ(v)
0 (α), i.e. by the inductive definition v /∈ Recur

δ(v)−1
0 (α)\Force1(Avoid

δ(v)−1
1 (α)).

From this we get that either v ∈ Force1(Avoid
δ(v)−1
1 (α)) or v /∈ Recur

δ(v)−1
0 (α)

In the former case, we get that there exists a successor v′ of v with δ(v′) ≤ δ(v) − 1 < δ(v), and
we are done.

In the latter case, we repeat the same argument, until we get the the former case at some point,
since otherwise we will eventually get v /∈ Recur00(α) = α, which is a contradiction since v ∈ α.

2. If v ∈ V0 then every successor v′ of v has δ(v′) ≤ δ(v), and if v ∈ α then the inequality is strict.

This follows similar lines to the former part. Assume by way of contradiction that there exists

a successor v′ of v with δ(v′) > δ(v), and hence v′ /∈ Avoid
δ(v)
1 (α) (since v′ enters “later” than

v). Thus, v′ ∈ Attr0(Recur
δ(v)
0 )(α). But then v ∈ Force0(Attr0(Recur

δ(v)
0 (α))) = Attr0(Recur

δ(v)
0 (α))

(since the force of the attractor is contained in the attractor). But this is a contradiction, since

v ∈ Avoid
δ(v)
1 (α) = V \ Attr0(Recur

δ(v)
0 (α)).

Now, assume that in addition v ∈ α. Since v ∈ Avoid
δ(v)
1 (α) = V \Attr0(Recur

δ(v)
0 (α)), then in par-

ticular v /∈ Recur
δ(v)
0 (α), i.e. by the inductive definition v /∈ Recur

δ(v)−1
0 (α)\Force1(Avoid

δ(v)−1
1 (α)).

From this we get that either v ∈ Force1(Avoid
δ(v)−1
1 (α)) or v /∈ Recur

δ(v)−1
0 (α)

In the former case, we get that every successor v′ of v satisfies δ(v′) ≤ δ(v)− 1 < δ(v), and we are
done.

In the latter case, we repeat the same argument, until we get the the former case at some point,
since otherwise we will eventually get v /∈ Recur00(α) = α, which is a contradiction since v ∈ α.

We can now define the winning strategy τ for Player 1 from V \X. Recall that X = Attr0(Recur0(α)),
and hence V \ X = Avoid1(α). Let τ ′ be a memoryless strategy for Player 1 that keeps a play within
Avoid0

1(α) = V \ Attr0(α) (which is a trap, and hence admits such a strategy).
For every v ∈ V1, we define:

τ(v) =


τ ′(v) v ∈ Avoid0

1(α)

v′ v ∈ Avoid1(α) \ α, with δ(v′) ≤ δ(v)

v′′ v ∈ Avoid1(α) ∩ α, with δ(v′) < δ(v)

v′′′ otherwise

Note that the existence of v′, v′′ is guaranteed by the arguments above.
It remains to show that τ is winning for Player 1 from V \X. Let π = π0, π1, . . . be a play consistent

with τ , with π0 ∈ V \ X. By the construction of τ , we have that πi ∈ V \ X for all i ≥ 0. Indeed,
for vertices in V1, τ always chooses a successor that remains in V \X, and for vertices in V0, Property
2 above guarantees that we remain in V \ X. Moreover, Properties 1 and 2 guarantee that δ(πi) is a
decreasing function, and strictly decreasing whenever α is reached. Since δ(v) = 0 implies v /∈ α, it
follows that π visits α finitely often, and is hence winning for Player 1.

Note that in particular, the proof of Lemma 11.3 shows that Win1 = V \Attr0(Recur0(α)) = Avoid1(α).
11.3 readily gives us the following.

Theorem 11.4. Büchi games are memoryless determined, and can be solved in polynomial time.
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Intermission – Non Memoryless Games

To complement Ex4 Q3, we show that Player 1 does not necessarily have a memoryless winning strategy
in a Rabin game. Or, viewed dually, we show that Player 0 does not have a memoryless strategy in a
Streett game.

Consider the 3-vertex Street game G = 〈V, V0, V1, E, α〉 with V = {q, p, r}., V0 = V , V1 = ∅, and
E = {(p, q), (q, p), (p, r), (r, p)} with α = {(V, {q}), (V, {r})}. Thus, a play is winning for Player 0 iff it
visits both q and r infinitely often.

Observe that a strategy for Player 0 amounts to deciding what to play from p, whenever it is reached.
Clearly, if the strategy is memoryless, then the play from p would be either (pq)ω or (pr)ω, both of which
are not winning.

However, a strategy that alternates between q and r is winning for Player 0.

12 Parity Games

We now turn our attention to parity games. Recall that by Theorem 4.20, deterministic parity automata
can capture all ω-regular languages. Thus, in a way, parity games are as general as we need.

Parity games have proved to be useful in many aspects of formal verification, logic and automata.
Despite that, the complexity of solving them has remained one of the most exciting open questions of
the past few decades:

The parity condition was first considered as a condition on games in 1984 by Mostowski [19] and
by Emerson and Jutla [5] in 1991. There, it was shown that parity games are memoryless determined.
This already gave the first fundamental result, which says that solving parity games can be solved in
NP ∩ coNP.

In 1993, McNaughton [15] developed a general algorithm for solving Muller games, which was adapted
by Zielonka [29] to parity games, and whose runtime was exponential (O(2n)). Soon after, the importance
of parity games was noticed (due to connections to µ-calculus and to mean-payoff games), and many
papers started dealing with the complexity of the problem.

In 1998, Jurdziński [8] shows that in fact, parity games can be solved in UP ∩ coUP. He also
improved Zielonka’s deterministic algorithm based on “progress measures” [9].

Since then, we have seen a significant body of work tackling parity games, with the “holy grail” being
a polynomial-time algorithm. Until 2017, the state of the art algorithms achieved complexity of roughly

n
√
d, where n is the number of vertices, and d is the index. However, an unexpected breakthrough in

2017 by Calude, Jain, Khoussainov, Li and Stephan [3] described the first quasi-polynomial algorithm,
working in npoly(log d). This work sprouted many other works showing quasi-polynomial algorithms,
with the most recent (at the time of writing these notes) being that of Parys [20], which, interestingly,
shows that quasi-polynomial time can be obtained by a small (but clever) modification of Zielonka’s 1993
algorithm.

Let’s start with the definition of parity games. Consider an arena 〈V, V0, V1, E〉 and let Ω : V →
{0, . . . , d} be a priority function. Theparity parity objective is

Parity(Ω) = {π ∈ V ω : min{Ω(q) : q ∈ inf(π)} is even}

That is, all the paths such that the minimal priority that appears infinitely often is even.
The corresponding parity game is G = 〈V, V0, V1, E,Parity(Ω)〉. We refer to d as theindex index of the

game (or of Ω).
We’re now going to jump right in and give McNaughton/Zielonka’s algorithm. After understanding

it and proving it’s correctness, we will see what results it gives us.

Lemma 12.1. Given a parity game G, Algorithm 1 computes the winning regions of the players in G.
Moreover, we can extract memoryless winning strategies for both players.

Proof. Let G = 〈V, V0, V1, E,Parity(Ω)〉 be a parity game. We prove the claim by induction over
n = |V |.

The base case is trivial: if n = 0, there are no vertices, and thus the winning regions are ∅ for both
players (c.f. Line 3), and the winning strategies are vacuously memoryless.
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Algorithm 1 Parity Games

1: procedure Solve(G = 〈V, V0, V1, E,Parity(Ω)〉)
2: if V = ∅ then
3: return Win0 = Win1 = ∅
4: else
5: l← min{Ω(v) : v ∈ V } . the minimal priority
6: i← l mod 2 . parity of minimal priority
7: L← Ω−1(l) . the set of minimal priority vertices
8: V ′ ← V \ Attri(L) . Remove Player i’s attractor to L
9: (W ′0,W

′
1)← Solve(G �V ′) . Recursively solve the subgame over V ′

10: if W ′1−i = ∅ then
11: return Wini = V , Win1−i = ∅.
12: else
13: B ← Attr1−i(W ′1−i) . Find the Player 1− i attractor to W ′1−i
14: V ′′ = V \B . Remove the attractor
15: (W ′′0 ,W

′′
1 )← Solve(G �V ′′) . Recursively solve the game over V ′′

16: return Wini = W ′′i and Win1−i = B ∪W ′′1−i

Assume correctness for every k < n, we prove for n. Let l, i, L be as in Lines 5,6,7. We define
V ′ = V \ Attri(L). Since L 6= ∅ by definition, then |V ′| < |V |. In addition, V ′ is a trap for Player i,
and in particular G �V ′ is a subgame (see Definition 10.8), so we can apply the induction hypothesis,
corresponding to the recursive call in Line 8 (see Figure 20).

L = Ω−1(l)

Attri(L)

V ′ = V \ Attri(L)

Figure 20: Line 8.

Thus, let (W ′0,W
′
1) = Solve(G �V ′), and by the induction hypothesis, W ′0 and W ′1 are the correct

winning regions in the subgame G �V ′ . Moreover, there are memoryless strategies σ′, τ ′ for Players i and
1− i in this subgame, respectively (see Figure 21).

We now separate the analysis to cases.

If W ′1−i = ∅: this is the easy case. We claim that Wini = V and Win1−i = ∅. Indeed, let σ̂ be the
memoryless attractor strategy for Player i from Attri(L) to L, as per Lemma 10.5, and consider the
Player i strategy σ : Vi → V defined as follows.

σ(v) =

{
σ′(v) v ∈ V ′
σ̂(v) v /∈ V ′

We claim that σ is winning for Player i from every vertex v0 ∈ V . Indeed, consider a play π consistent
with σ from v0. By the definition of σ̂, whenever a vertex πi /∈ V ′ occurs, then πi ∈ Attri(L) and thus π
visits L within at most n steps from πi. Thus, if π goes outside V ′ infinitely often, then min{Ω(q) : q ∈
inf(π)} = l, and i = l mod 2, so Player i wins.

Otherwise, π goes outside V ′ only finitely often, so π eventually remains in V ′. Then, however, σ
behaves identically to σ′, which is winning from every vertex in V ′, so Player i again wins.
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L = Ω−1(l)

Attri(L)

V ′ = V \ Attri(L)

W ′i

W ′1−i

Figure 21: Line 9.

W ′1−i

B = Attr1−i(W ′1−i)

W ′′1−i

W ′′i

Figure 22: Lines 13–14.

If W ′1−i 6= ∅: this is the interesting case. Set B = Attr1−i(W ′1−i) and let V ′′ = V \B as per lines 13–14.
(see Figure 22).

Since W ′1−i 6= ∅, it follows that |V ′′| < |V |, and V ′′ is a trap and hence a subgame. Therefore, we
can again apply the induction hypothesis, corresponding to the recursive call in Line 15.

Thus, let (W ′′0 ,W
′′
1 ) = Solve(G �V ′′), and by the induction hypothesis, W ′′0 and W ′′1 are the correct

winning regions in the subgame G �V ′′ . Moreover, there are memoryless strategies σ′′, τ ′′ for Players i
and 1− i in this subgame, respectively.

We now claim Wini = W ′′i and Win1−i = B ∪W ′′1−i (note that these indeed form a partition of V ).
In order to prove this, it’s enough to prove that W ′′i ⊆Wini and that B ∪W ′′1−i ⊆Win1−i.

We start with the former. Consider the Player i strategy σ : Vi → V defined as follows.

σ(v) =

{
σ′′(v) v ∈ V ′′
w v /∈ V ′′, where w is an arbitrary successor

We claim σ is winning for Player i from V ′′. Indeed, since V ′′ is a trap for Player 1 − i, then σ′′(v)
ensures that every play consistent with it remains within V ′′. Thus, σ is identical to σ′′ when starting
from V ′′, and is therefore winning for Player i.

Next, let τ̂ be the attractor strategy for Player 1− i from B to W ′1−i, and consider the Player 1− i
strategy τ : V1−i → V defined as follows.

τ(v) =


τ̂(v) v ∈ B \W ′1−i
τ ′(v) v ∈W ′1−i
τ ′′(v) v ∈W ′′1−i
w otherwise, where w is an arbitrary successor
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Figure 23: A parity game.

We show that τ is winning for Player 1 − i from B ∪W ′′1−i. Indeed, consider a play π consistent with
τ . Observe that if, at any point, π reaches B (in particular, if π starts from B), then within at most
n steps, π reaches W ′1−i, which is a trap for Player i, and hence τ is identical to τ ′ on W ′1−i, and in
particular τ is winning for Player 1− i.

Otherwise, if π never reaches B, and starts from W ′′1−i, then π is also a play in G �V ′′ , where τ is
identical to τ ′′, and in particular is winning from W ′′1−i, and we conclude the claim.

Now that we understand the algorithm, let’s demonstrate it on an example.

Example 12.2. Consider the game depicted in Figure 23. The run of Algorithm 1 on this game proceeds
as follows.

L = Ω−1(0) = {v4, v8}.
Attr0(L) = {v3, v4, v6, v7, v8}.
V ′ = {v0, v1, v2, v5}.
Solving G �V ′ recursively yields: W ′0 = ∅ and W ′1 = {v0, v1, v2, v5}.
B = Attr1(W ′1) = {v0, v1, v2, v4, v5, v8}.
V ′′ = {v3, v6, v7}.
Solving G �V ′′ recursively yields: W ′′0 = {v3, v6, v7} and W ′′1 = ∅.
We have Win0 = {v3, v6, v7} and Win1 = {v0, v1, v2, v4, v5, v8}.

4

Finally, lets analyze the complexity of Algorithm 1: assume |V | = n and that there are d priorities.
In the first recursive call, we reduce the size of V to at most n− 1, and reduce the number of priorities
to at most d− 1. In the second recursive call, we only reduce the number of vertices. Thus, the number
of recursive calls T (n, d) satisfied T (n, d) ≤ T (n− 1, d− 1) + T (n− 1, d), with T (0, d) = T (n, 1) = 0 (if
there is only one priority, the winner is determined immediately). It is easy to prove by induction that
T (n, d) ≤ nd. Indeed,

T (n, d) ≤(n− 1)d−1 + (n− 1)d = (n− 1)d−1 + (n− 1)d−1(n− 1) =

=(n− 1)d−1(1 + n− 1) = n(n− 1)d−1 ≤ n · nd−1 = nd

This means that the overall complexity is at most ndpoly(n), as in each iteration we only compute
attractors.

13 LTL Synthesis Revisited

Recall the LTL realizability and synthesis problems from 8.2: we are given an LTL formula ϕ over I ∪O,
and we want to decide whether there exists an I/O transducer T that realizes ϕ, and if so – to find one.

We are now ready to solve this problem.
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Theorem 13.1. LTL realizability is 2EXPTIME-Complete. When a formula is realizable, we can
compute a transducer that realizes it.

Proof. We only prove the upper bound. For the lower bound (obtained by reduction from the word
problem for Alternating Exponential-Space TMs) see [22].

Let ϕ be an LTL formula of length n over I ∪ O. Consider a DPW Dϕ = {Q, 2I∪O, δ, q0,Ω} that is
equivalent to ϕ. We obtain from Dϕ a parity game G as follows: the vertices of the game are V = V1∪V0

with V0 = Q×2I and V1 = Q, and we have the edges E = {(q, (q, i)) : q ∈ V1, i ∈ 2I}∪{((q, i), δ(q, i∪o)) :
(q, i) ∈ V0, o ∈ 2O}. The parity ranks in G are determined according to the state component. That is,
the ranking functions is α : V → {1, . . . , d}} where α(q) = Ω(q) and α((q, i)) = Ω(q).

Intuitively, in every vertex q ∈ V1, Player 1 (the environment) chooses an input i ∈ 2I . Then, the
game moves to the Player 0 vertex (q, i), from which Player 0 chooses an output o ∈ 2O, at which point
the game moves to δ(q, i ∪ o).

Observe that a memoryless winning strategy for Player 0 from q0 exactly corresponds to an I/O
transducer, which outputs whatever Player 0 decides to play in each state (q, i).

We thus have that Player 0 wins from q0 iff ϕ is realizable, if so, a memoryless strategy corresponds
to a transducer.

It remains to figure out the complexity of this procedure (that is, constructing Dϕ, and solving the
corresponding game).

The size of Dϕ is 22O(n)

, by Theorems 4.20 and 6.12. However, the index of Dϕ is 2O(n) (again by

Theorems 4.20 and 6.12). The complexity of solving the game (using Algorithm 1) is then (22O(n)

)2O(n)

=

22O(n)

, which is double exponential.

The horrible complexity of synthesis could have maybe been forgiven, if the resulting transducers
would have been small. This, of course, is not the case.

Theorem 13.2. There exists a realizable LTL formula ϕ of length O(n2) over I ∪ O whose minimal
realizing transducer is of size Ω(22n

).

Proof. Recall that in Theorem 6.14, we showed there exists an LTL formula ϕ of size n2 such that the
minimal equivalent DPW has at least 22n

states. Specifically, ϕ was over the alphabet Σ = {0, 1,#, $}
(where Σ is not of the form 2AP , but can easily be described as such using two atomic propositions),
and the language of ϕ is

Ln = {{0, 1,#}∗ ·# · x ·# · {0, 1,#}∗ · $ · x ·#ω : x ∈ {0, 1}n}

We modify this language slightly, and define:

Kn = {{0, 1,#}∗ ·# · x ·# · {0, 1,#}∗ · $ · x ·# · {0, 1,#, $}ω : x ∈ {0, 1}n}

That is, once $x# is seen, the rest of the word is arbitrary (instead of #ω). Clearly Kn is still definable
by an LTL formula ϕ of length O(n2).

Denote by I the propositions of ϕ, and let O = {o} be a new proposition. Define ψ := ϕ←→ Fo.
Thus, ψ is satisfied by a computation π ∈ (2I∪O)ω iff either π|I |= ϕ and o occurs in π, or π|I 6|= ϕ

and o does not occur in π.
Observe that ϕ is realizable. Indeed, a realizing transducer can “remember” each word (of length

exactly n) that appears between two # symbols, and once $ is seen, compare the next n letters to one of
the remembered words. Then, if a match is found, output o when # is seen. Otherwise, the transducer
always outputs ∅.

We now claim that the minimal transducer is of size at least 22n

. The proof is practically identical to
that of Theorem 6.14: if (by way of contradiction) T is a realizing transducer with less than 22n

states,
then we can find two sequences x0#x1# . . .#xk and y0#y1# . . .#ym where the xi and yi are strings
over {0, 1}n, such that w.l.o.g. there exists a string z that appears within the xi, but not within the yi,
and such that the run of T on these strings leads to the same state of T . Then, an environment input
of z will either cause T to output o, or not. Either answer is wrong.

54



14 ω-Regular Games

While parity games are enough for our analysis of LTL synthesis, other acceptance conditions can also
be useful for games, in certain scenarios.

We now show that any ω-regular game, can be reduced, in a way, to parity games.

14.1 The Composition Game

Consider a game G = 〈V, V0, V1, E,Win〉, and suppose Win can be described by a parity automaton. That
is, we are given a DPW D = 〈Q,V, δ, q0,Ω〉 (notice that the alphabet of D is V – the vertices of the
game) such that L(D) = Win.

We define the
composition

game

composition game D ◦ G = 〈Q× V,Q× V0, Q× V1, E
′,Parity(Ω′)〉 such that:

� ((q, v), (q′, v′)) ∈ E′ iff (v, v′) ∈ E and q′ = δ(q, v).

� Ω′((q, v)) = Ω(q)

Intuitively, D◦G proceeds similarly to G, but in addition the DPW D keeps track of the state of D while
reading the play of the game.

The main property of the composition game is the following.

Lemma 14.1. In the notations above, Player i wins from a vertex (q, v) in D ◦ G iff Player i wins from
vertex v in G for i ∈ {0, 1}.
Proof. We prove the claim for i = 0. The claim for i = 1 is completely dual. Consider a vertex
(q, v) ∈Wini and a memoryless winning strategy σ for Player 0 from (q, v).

We construct a strategy σ′ in G which uses D as “memory”: σ′ keeps track of the state of A by
updating it with the current state, and outputting whichever state σ dictates in A ◦ G (this is not
completely formal, but it’s easy to formulate similarly to the transducers discussed in Section 8.2).

Since σ is winning for Player i, then any sequence of states (of A) induced by it is accepted by A (if
i = 1, this changes to “rejected”), and is hence winning (by definition) in G. It follows that σ is winning
in G.

Modifying the proof also for Player 1, we get that for every i ∈ {0, 1}, if Player i wins from (q, v)
in D ◦ G, then Player i wins from v in G. But this already implies the “only if” direction, and we are
done.

The type of strategy obtained in the proof of Lemma 14.1 is not memoryless, but does have a finite
auxiliary memory structure. This type of strategy is called finite-memory, and is the “next best thing”
after memoryless strategies.

As we showed in 4, every ω-regular language can be described by a DPW. Hence, we conclude with
the following.

Theorem 14.2. Let G = 〈V, V0, V1, E,Win〉 be a game where Win is an ω-regular objective, then Win0

and Win1 are computable, and the players have finite-memory winning strategies.

14.2 Nondeterministic Automata and Games

Observe that throughout our study of games, whenever we used automata to obtain games (in particular,
in Theorem 13.1 and Section 8.2) we always used deterministic automata. One may wonder why not use
nondeterministic automata?

We start by demonstrating where this approach fails.

Example 14.3. Consider the NBW in Figure 24(a), which models (stupidly) the formula X(p←→ q).
Suppose I = {p} and O = {q}. If we attempt to convert this NBW to a game by state-splitting, as

we did in Theorem 13.1, we obtain the game in Figure 24(b).
Observe that in the obtained game, Player 0 does not have a winning strategy, despite the formula

being realizable. Indeed, the reason is that Player 0 needs to resolve the nondeterminism of state A (in
states (A, {p}) and (A, ∅)) in addition to responding with an output. However, Player 0 does not know
how to resolve the nondeterminism, since the nondeterministic automaton requires that she “commits”
to the output before seeing the input. 4
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(a) An NBW for X(p←→ q). (b) The game obtained from Figure 24(a).

Figure 24: A game obtained from a nonodeterministic automaton.

The fundamental reason for the problem in Example 14.3 is that nondeterminism is much “stronger”
than strategies, in that sometimes one needs to “know the future” in order to select an accepting run.
Indeed, this is the source of strength of nondeterministic models. Thus, requiring the player to resolve
nondeterminism in addition to selecting an output is just too much.

This problem has a partial workaround by means of good-for-games automata [7], which allow only
nondeterminism that can be resolved in a “strategic” way.

1. Alternating automata:

� Definition as extension of nondet.

� Example: UCW for infinitely many a.

� Alternation removal from ABW (Miyano Hayashi 1984)

� Corollary: NCW=DCW: NCW to UBW to DBW to DCW.

� NBW complementation: NBW to AWW with n2 blowup, and then AWW can be seen as ACW,
so comeplement ABW obtained in O(1), and then alternation removal Kupferman-Vardi 2001

2. Tree automata:

� Definitions. The run on a tree is a Q-labelled tree.

� Example: NBT Language of trees where there exists a branch with infinitely many a’s.

� Example: DMT trees where each branch has finitely many a’s

� No NBT for latter, since guesses need to be verified on entire subtree.

� NPT and parity games: given a tree t we can check whether it’s accepted by building a game
where Player 0 tries to resolve nondeterminism, and Player 1 chooses a branch. Player 0
wins if there is a resolution of the nonodeterminism at each state, such that every branch is
accepting.

� Similarly, we can allow Player 0 to also choose the letter, thus creating an emptiness-game.

� Memoryless strategy for parity games implies a regular witness.

� Rabin’s theorem: translation between S2S and NPT.

� There are also alternating tree automata, of course. And they are useful.

3. Weighted automata:

� model.
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� example. No determinization.

4. Dynamical systems:

� Linear loops as programs.

� Reachability analysis.

� LRS. Eigenvalues. Skolem problem.

� Connections to number theory, Baker. Scary stuff.

� Semialgebraic sets and reachability. Quantifier elimination. Math.

5. Planning as synthesis.
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