Quantitative Semantics on
Jumping Automata

Ishai Salgado

Quantitative Semantics on
Jumping Automata

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Ishai Salgado

Submitted to the Senate
of the Technion — Israel Institute of Technology
Sivan 5784 Haifa June 2024

This research was carried out under the supervision of Dr. Shaull Almagor, in the
Faculty of Computer Science.

The author of this thesis states that the research, including the collection, processing
and presentation of data, addressing and comparing to previous research, etc., was
done entirely in an honest way, as expected from scientific research that is conducted
according to the ethical standards of the academic world. Also, reporting the research
and its results in this thesis was done in an honest and complete manner, according to

the same standards.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1
1 Introduction 3
1.1 Related Work 5

1.2 Contribution and Organization 5

2 Preliminaries 7
2.1 Permutations 7

2.2 Nondeterministic Finite Automata 7
2.3 Jumping Automata 8

3 The Quantitative Semantics 9
3.1 Introduction. 9

3.2 The Semantics 9
3.2.1 The Absolute Distance Semantics 9

3.2.2 The Reversal Semantics 9

3.2.3 The Hamming Semantics 10

3.3 Quantitative Decision Problems 10

4 The Absolute Distance Semantics 13
4.1 The Membership Problem for ABS 13
4.2 Decidability of Boundedness Problems for ABS 14
4.3 PSPACE-Hardness of boundedness for ABS 17

5 The Reversal Semantics 21
5.1 The Membership Problem for REV 21
5.2 Decidability of Boundedness Problems for REV 21
5.3 PSPACE-Hardness of Boundedness for REV 24

6 The Hamming Semantics 27
6.1 The Membership Problem for HAM 27
6.2 Decidability of Boundedness Problems for HAM 27

6.3 PSPACE-Hardness of Boundedness for HAM

7 Interplay Between the Semantics

8 Conclusion and open questions

8.1 Conclusion

8.2 An Open question

Hebrew Abstract

31

35
35
35

List of Figures

1.1 The Jumping Finite Automaton A
3.1 The Jumping Finite Automaton B

4.1 A single transition in the construction of Lemma 4.2.2.

16

Abstract

Jumping automata are finite automata that read their input in a non-sequential manner,
by allowing a reading head to ”jump“ between positions of the input, consuming a
permutation of the input word. We argue that allowing the head to jump should incur
some cost. To this end, we propose three quantitative semantics for jumping automata,
whereby the jumps of the head in an accepting run define the cost of the run. The
three semantics correspond to different interpretations of jumps; the absolute distance
semantics counts the distance the head jumps, the reversal semantics counts the number
of times the head changes direction, and the Hamming semantics measures the number
of letter-swaps the run makes.

We define and study several problems regarding these semantics. The membership
problem determines given a jumping automaton whether a word w is bounded by some
given number k. We show that the membership problem is NP-complete under the
three semantics.

We also study the boundedness problem: given a jumping automaton, decide whether
its (quantitative) language is bounded by k. We establish the decidability and give lower
bounds for this problem under several variants.

Furthermore, several relations between the boundedness problems of the seman-
tics are established: if an automaton is bounded under the Hamming semantics, it is
also shown to be bounded under the reversal semantics. Similarly, absolute distance
boundedness implies Hamming boundedness. We give examples showing that no other

similar implications hold.

Chapter 1

Introduction

Traditional automata read their input sequentially as is the case for most state-based
computational models. In contrast, a Jumping Finite Automaton (introduced in [MZ12])
may read its input in a non-sequential manner, jumping from letter to letter, as long as
every letter is read exactly once. A jumping automaton is relevant in cases where the
order of the input does not matter. One such example is when the input represents avail-
able resources, and we only wish to reason about their quantity. From a more language-
theoretic perspective, this amounts to looking at the commutative closure of the lan-
guages, a.k.a. their Parikh image. Several works have studied the algorithmic properties
and expressive power of these automata [FPS15, FS17, Vorl8, FHY21, LPS14].

In [MZ12], the model of JFA (jumping finite automaton) and its motivation are
presented. Various closure properties of JFA languages are studied, e.g. JFA languages
are shown to be closed under complement, intersection, union, permutation and shuffle.
[FS17] further studies the JFA model, introducing a variant of regular-like expressions,
called alphabetical shuffle expressions that characterize JFA languages. Using these
expressions it is proved that JFA are closed under iterated shuffle. Moreover, a number
of complexity problems are studied, e.g. the membership problem for JFAs is shown
to be NP-hard.

While JFAs are an attractive and simple model, they present a shortcoming when
thought of as a model for systems, namely that the abstraction of the order may be
too coarse. More precisely, the movement of the head can be thought of as a physical
process of accessing the input storage of the JFA. Then, for some cases the movement
should be cheaper than in others, e.g. when the head moves sequentially. The ability
to jump around is physically more difficult so it should not come “for free”.

In our work we present three quantitative semantics which attempt to quantify the
cost of jumping. For our purposes we treat a JFA as a function from words to costs,
capturing how expensive it is to accept a given word with respect to the head jumps.
We wish to explore the properties of such semantics, their differences and other traits.

We briefly present the three different semantics: Consider a JFA A and a word w,

and let p be an accepting run of A on w. The run p in our case specifies the sequence

of states and indices visited in w. We first define the cost of individual runs.

1. In the Hamming (Agan) semantics, we look at the word w’ induced by p, i.e,
the word obtained when reading w in the order p reads it. The cost of p is the

number of letters where w’ differs from w.

2. In the Absolute Distance (Axps) semantics the cost of p is the sum of the lengths

of jumps it makes.

3. In the Reversal (Argyv) semantics the cost of p is the number of times the head
“turns” while reading w (i.e. it changes from moving left to right to moving right

to left or vice versa).

We then define the cost of the word w according to each semantics (which we denote
by Aggnm(w)) where SEM € {HAM, ABS,REV}, by taking the run that minimizes
the cost.

Thus, we lift JFAs from a Boolean automata model to the rich setting of quantitative
models [DKV09]. Unlike other quantitative automata, however, the semantics in this
setting arise naturally from the model, without an external domain. Moreover, the
definitions are naturally motivated by different types of memory access, as we now
demonstrate. First, consider a system whose memory is laid out in an array (i.e., a
tape), with a reading head that can move along the tape. Moving the head requires
some energy, and therefore the total energy spent reading the input corresponds to
the ABS semantics. Next, consider a system whose memory is a spinning disk (or
a sliding tape), so that the head stays in place and the movement is of the memory
medium. Then, it is cheap to continue spinning in the same direction, and the main
cost is in changing the arm direction. Then, the REV semantics best captures the
cost. Finally, consider a system that reads its input sequentially, but is allowed to edit
its input by replacing one letter with another, such that at the end the obtained word
is a permutation of the original word. This is akin to edit-distance automata [Moh03]
under a restriction of maintaining the amount of resources. Then, the minimal edits

required correspond to the HAM semantics.

Figure 1.1: The Jumping Finite Automaton A

Ezample 1.0.1. In order to illustrate the differences between the semantics defined
above, consider the JFA A, depicted in Figure 1.1. A accepts every word where the

number of instances of a is equal to the number of instances of b, as every such word

has a permutation in (ab)*. But the word w = a®b® has different costs depending on

the semantincs used:

o In the Hamming semantics, Agay(w) = 2 as there is an accepting run where the
only letters changed are the letters in indices 2 and 5. It is not hard to see that

there is no better run.

o In the Absolute Distance semantics, Axps(w) = 8. An optimal order of indices
to be read is 1,4,2,5,3,6, which has three jumps of cost two (1 to 4, 2 to 5 and 3
to 6. In Chapter 4, the cost of a jump is defined to be one less than the distance
jumped over) and two jumps of cost 1 (4 to 2 and 5 to 3).

o In the Reversal semantics, Aggpy(w) = 4 by the same sequence of indices above,
as the head performs four “turns”, two from right to left (at indices 4 and 5) and

two from left to right (at indices 2 and 3).

1.1 Related Work

Jumping Automata were introduced in [MZ12]. We remark that [MZ12] contains some
erroneous proofs (e.g., closure under intersection and complement, also pointed in
[FS17]). The works in [FPS15, FS17] establish several expressiveness results on jump-
ing automata, as well as some complexity results. In [Vorl8] many additional closure
properties are established. An extension of jumping automata with a two-way tape
was studied in [FHY21], and jumping automata over infinite words were studied by the
first author in [AY23].

When viewed as the commutative image of a language, jumping automata are closely
related to Parikh Automata [KR03, CFM11, CFM12], which read their input and accept
if a certain Parikh image relating to the run belongs to a given semilinear set (indeed, we
utilize the Parikh Automata in our proofs). Another related model is that of symmetric
transducers - automata equipped with outputs, such that permutations in the input
correspond to permutations in the output. These were studied in [Alm20] in a jumping
flavour, and in [NA21] in a quantitative k-window flavour.

More broadly, quantitative semantics have received much attention in the past
two decades, with many motivations and different flavors of technicalities. For more
information, the reader should refer to [Bok21, DKV09] and the references therein.

1.2 Contribution and Organization

Our contribution consists of the introduction of the three jumping semantics, and the
study of decision problems pertaining to them (defined in Chapter 3). Our main focus
is the boundedness problem: given a JFA A, decide whether the function described
by it under each of the semantics is bounded by some constant k. We establish the

decidability for all the semantics, and consider the complexity of some fragments.

This work is organized as follows: the preliminaries and definitions are given in
Chapter 2 and Chapter 3. Then, each of Chapters 4 to 6 studies one of the semantics,
and follows the same structure: we initially establish that the membership problem for
the semantics is NP-complete. Then we characterize the set of words whose cost is
at most k using a construction of an NFA. These constructions differ according to the
semantics, and involve some nice tricks with automata, but are technically not hard to
understand. We note that these constructions are preceded by crucial observations re-
garding the semantics, which allow us to establish their correctness. Next, in Chapter 7
we give a complete picture of the interplay between the different semantics (using some
of the results established beforehand). Finally, in Chapter 8 we discuss some exciting

open problems.

Chapter 2

Preliminaries

Consider a finite alphabet . For every n € {1,...,n} we denote by X" the set of
words of length n over . For w € X" we denote its letters by w = wy - - - wy, and its

length by |w| = n. ¥* is the language of all words over X of any length.

2.1 Permutations

Given n € N, the permutation group S, is the set of bijections (permutations) from
{1,...,n} to itself. The identity permutation is denoted by id and is defined by id(i) =i
for every i € {1,...,n}.

Sy, forms a group with the function-composition operation. Given a word w =
wi - wp, € X" and a permutation 7 € Sy, we define m(w) = (wr(1), o, Wr(n))-

We say that a word y is a permutation of x, and we write x ~ y if and only if there

exists a permutation 7 € S| such that 7(z) = y.

2.2 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple A = (X, Q, 0, Qo, F'), where X
is a finite alphabet, Q is a finite set of states, ¢ : Q x ¥ — 29 is a nondeterministic
transition function, @y C @ is a set of initial states, and F' C @) is a set of accepting
states.

For a word w = wyws - - - w, € X*, we define the run of A on w to be a sequence
P = qo,q1,---,qn Where g9 € Qo and ¢;+1 € 0(g;, w;y1) for every 0 < i < |w|. We say
that p is accepting if ¢, € F. A word w is accepted by A if there exists an accepting
run of A on w. The language of A, denoted by £(A), is the set of words accepted by
A.

An NFA A is universal if £(A) = ¥*. The universality problem for NFAs is the
question of whether A is universal. This problem is well known to be PSPACE-complete
[MST72].

2.3 Jumping Automata

Consider an NFA A. We see A as a jumping finite automaton (JFA) by letting it ”jump”
over letters. Equivalently, it can be seen as an NFA that reads a (nondeterministically
chosen) permutation of the input word.

Formally, consider an NFA A. A word w € X* is accepted by the jumping finite
automaton (JFA) A if there is a permutation 7 such that m(w) is accepted by A as an
NFA. The jumping language of A is defined, in a similar way to NFAs, to be all the
words accepted by A. Equivalently, it is:

JA) ={weX |FueX w~uiuec (A}

Since our aim is to reason about the manner with which the head of a JFA jumps,
we introduce a notion to track the head along a run. Consider a word w of length n
and an NFA A. A jump sequence is a vector a = (ag a1 a2 ... Gy apy1) where ag = 0,
an+1 =n+1and (a1 az ... a,) € S,. We denote by J,, the set of all jump sequences
of size n + 2.

Intuitively, a jump sequence a = (ag a1 az ... a, an+1) represents the order in
which a JFA visits a given word of length n. First it visits the letter at index ay,
then the letter at index az and so on. To capture this, we define wa = wWq, Wq, - - - Wq,, -
Observe that jump sequences enforce that the head starts at position 0 and ends at
position n + 1, which can be thought as left and right markers, as is common in e.g.,
two-way automata.

An alternative view of jumping automata is via Parikh Automata (PA) [CFM12],
[KRO03]. The standard definition of PA is an automaton whose acceptance condition
includes a semilinear set over the transitions. To simplify things, and to avoid defining
unnecessary concepts (e.g., semilinear sets), for our purposes, a PA is a pair (A4, C)
where A is an NFA over alphabet ¥, and C is a JFA over X. Then, the PA (A, C)
accepts a word w if w € £(A)NJ(C). Note that when £(A) = ¥*, then the PA
coincides with J(C). Our usage of PA is to obtain the decidability of certain problems.
Specifically, from [KRO03] we have that emptiness of PA is decidable.

Chapter 3

The Quantitative Semantics

3.1 Introduction

In this chapter we present and demonstrate the three quantitative semantics for JFAs.
We then define the relevant decision problems. For the remainder of the chapter fix a
JFA A= (X2,Q,6,Q0, F).

3.2 The Semantics

3.2.1 The Absolute Distance Semantics

In the absolute distance semantics, the cost of a run (given as a jump sequence) is the
sum of the sizes of the jump made by the head. Since we want to think of a sequential
run as a run with 0 jumps, we measure a jump over k cells as distance k — 1 (either to
the left or to the right). This is captured as follows.

For k € Z\ {0} we define ||k|| = |k| — 1. Consider a word w € ¥* with length n, and
let a = (ag,a1,a2,...,an,an+1) be a jump sequence, then we lift the notation above

and write |ja]| = E?if”ai —aj-1]|-

Definition 3.2.1. For a word w € ¥* with length n we define
Apps(w) = min{||a|| | a is a jump sequence, and wy € £(A)}
If the set above is empty, we define Axps(w) = 0.

3.2.2 The Reversal Semantics

In the reversal semantics, the cost of a run is the number of times the head changes
direction in the corresponding jump sequence. Consider a word w € ¥* with length n,

and let a = (ag a1 a2 ... a, ap+1) be a jump sequence, we define

#rev(@) = [{i € {1,...,n} | (a; > ai—1 ANa; > ai+1) V (a;i < ai—1 Aa; < aiy1)}

Definition 3.2.2. For a word w € ¥* with length n we define
Argv(w) = min {#grgv(a) | a is a jump sequence, and w, € £(A)}
If the set above is empty, we define Agpy(w) = oco.

3.2.3 The Hamming Semantics

In the Hamming semantics, the cost of a word is the minimal number of coordinates that
need to be changed in order for the obtained word to be accepted by A (sequentially,

as an NFA), so that the changed word is a permutation of w.

Definition 3.2.3. The Hamming distance between words of the same length x,y € X"

such that z ~ y is:
duam(z,y) = {i | z: # yi}|

Definition 3.2.4. For a word w € X* we define:
Agan(w) = min{dg (w,w’) | w" € L(A),w" ~ w}
If the set above is empty, we define Agan(w) = oo.

Remark. Note that the definitions of the three semantics are independent of the NFA,
and only refer to its language. We can therefore refer to the cost of a word in a language

according to each semantics, rather than the cost of a word in a concrete automaton.

3.3 Quantitative Decision Problems

Let SEM € {HAM, ABS,REV}.

We say that Aggn is k-bounded if for all w € J(A), Aspm(w) < k. We define a
similar term for the universal variant: Aggn is universally k-bounded if for all w € X*,
Agpyv(w) < k. Additionally, we say that Aggn is bounded (or universally bounded)
if there exists a k € N such that Agpy(w) < k for all w € J(A) (or all w € ¥,
respectively).

In the remainder of the work we focus on quantitative variants of the standard
Boolean decision problems pertaining to the jump semantics. Specifically, we consider

the following problems for each semantics.

1. Membership: Given a JFA A, k € N and a word w, decide whether Agpn(w) < k.

2. k-BOUNDEDNESS (fixed k): Given a JFA A, decide whether Yw € J(A) Agpm(w) <
k.

3. PARAM-BOUNDEDNESS: Given a JFA A and & € N, decide whether Yw €
J(A) Asem(w) < k.

10

We also pay special attention to the universal setting, in which case we refer to the
last two problems as UNIV-k-BOUNDEDNESS and UNIV-PARAM-BOUNDEDNESS. For
example, in UNIV-PARAM-BOUNDEDNESS we are given a JFA A and k£ € N and the
problem is to decide whether Aggy(w) < k for all words w € ¥*.

The boundedness problems can be thought of as quantitative variants of Boolean
universality (i.e., is the language equal to ¥*). Observe that the problems above are
not fully specified, as the encoding of k (binary or unary) when it is part of the input
may affect the complexity. We remark on this when it is relevant.

Note that Boolean emptiness problem variants are absent from the list above. In-
deed, a natural quantitative variant would be: is there a word w such that Aggpy(w) <
k. This, however, is identical to Boolean emptiness, since if there exists a word w such
that Aggy(w) < k then there exists a word w’ such that Aggy(w’) = 0. Conversely,
if there does not exist such w, then A is empty when seen as an NFA. We therefore
do not consider this problem. Another problem to consider is boundedness when k is
existentially quantified. We elaborate on this problem in Chapter 8.

We observe that there is a simple reduction from k-BOUNDEDNESS to PARAM-
BOUNDEDNESS: given a JFA A, output (A, k). We will use this reduction throughout

our work.

Ezample 3.3.1. As an example observe again the JFA A which appears in Figure 1.1.
We have shown that A is not 1-bounded regarding the three measures. Moreover, the
set of words {a"0" | n € N} shows that A isn’t k-bounded for any k and for any of the

three measures.

Figure 3.1: The Jumping Finite Automaton B

Ezample 3.8.2. Consider now the NFA B from Figure 3.1 which accepts the language
a*b*. When seen as a JFA, B accepts all the words in {a,b}*, since every such word
can be written as a sequence of a’s followed by a sequence of b’s. Observe that in the
REV semantics, for every word w we have Brpv(w) < 2, since at the worst case B
reads all the a’s in one left to right pass, then all of the b’s in one right to left pass, and
then jumps to the right end marker, and thus it has two turning points. In particular,
Brrv is bounded. However, in the ABS and HAM semantics, the cost can become
unbounded as seen by words of the form 6"a". Indeed, in the ABS semantics the head
must first jump over all the b", incurring a high cost, and for the HAM semantics, all

the letters must be changed, also incurring a high cost.

11

12

Chapter 4

The Absolute Distance Semantics

4.1 The Membership Problem for ABS

The first semantics we investigate is the Absolute Distance semantics, and we start by
showing that its membership problem is NP-complete. This is based on bounding the

distance with which a word can be accepted.

Lemma 4.1.1. Let A be an NFA, and w € J(A) with length n. Then Aaps(w) < n?.

Proof. Since w € J(.A), there exists a jump sequence a = (ag a1 ... an ap+1) such that
wa € £(A) and Apps(w) = ||al|. Observe that |a; —a;—1| <nforallie {1,...,n+1},
since there is no jump from 0 to n + 1 (since the head starts at ap = 0 and ends at
an =n + 1 and must go through all the indices between). The following concludes the

proof:

n+1 n+1 n+1

lall = > llai —ai-1ll = D (lai —aima) =1 < Y (n—1) = (n+ 1)(n — 1) < n”
i=1 i=1 i=1

We can now prove the complexity bound for the membership problem in the Abso-

lute Distance semantics, as follows:

Theorem 4.1. The problem of deciding, given a JFA A, w € ¥* and k € N, whether
Aaps(w) < k, is NP-complete.

Proof. First we establish membership in NP. If k& > n? we can set k = n? as per Lemma
4.1.1. So we can assume k < n?. Then, it is sufficient to nondeterministically guess a
jump sequence a € J,, and to check that wa € £(.A) and that ||a]| < k. Both conditions
are easily checked in polynomial time, since k is polynomially bounded.

Hardness in NP follows by reduction from (Boolean) membership in JFA: it is
shown in [FS17] that deciding whether w € J(A) is NP-hard. We reduce this problem
to ours by outputting, given A and w, the same A and w with the bound k = n?. The
reduction’s correctness follows from the fact that if w € J(A) then by Lemma 4.1.1,
Axps(w) <n?, and if w ¢ J(A) then Apps(w) = oo > n?. []

13

4.2 Decidability of Boundedness Problems for ABS

We now turn our attention to the boundedness problems. Consider a JFA A and k € N.
Intuitively, our approach is to construct and NFA B that simulates, while reading a
word w € X*, every jump sequence of A on w whose absolute distance is at most k.
The crux of the proof is to show that we can indeed bound the size of B as a function
of k. At a glance, the main idea here is to claim that since the absolute distance is
bounded by k, then A cannot make large jumps, nor many small jumps. Then, if we
track a sequential head going from left to right, then the jumping head must always be
within a bounded distance from it. We now turn to the formal arguments. Fix a JFA
A=(%,Q,9,Q, F).

In order to understand the next lemma, imagine A’s jumping head while taking the
jth step in a run on w according to a jump sequence a = (ag a1 a2 ... ap ap+1). Thus
the jumping head currently points to the letter at index a;. Concurrently, imagine a
"sequential” head, which points to the j¥* letter in w, which is the letter that would
be read if we were reading w in a sequential manner. Note that these two heads start
and finish reading the word at the same indices ag = 0 and a,+1 = n+ 1. So, it stands
to reason that if at any step while reading w the distance between these two heads is
large, the cost of reading w according to a would also be large, as there would need
to be jumps that bridge the gaps between them. The following lemma formalizes this

idea:
Lemma 4.2.1. Let a = (ap a1 a2 ... ay any1) be a jump sequence. For every 1 <

j < n it holds that ||a| > |a; — j].

Proof. Let 1 < j <n+ 1. First, assume that a; > j. We’ll look at the sum Zgzl lla; —
a;—1]] < ||la||. From the definition of |- || we have Zgzl lla; —ai—1]| = g:l la; —ai—1|—7,

and we conclude that in this case |la|| > |a; — j| by the following:

J j
Z‘al_az—ll_] 2 |Zal_al_1’—] g) ’aj_aoy_]:a]_j:’a]_j‘
i=1 triangle — telescopic

inequality sum

Now assume that a; < j. The proof in this case is similar but instead of looking

at the sum 25:1 lla; — a;—1]|, we look at the sum ijjlﬂ lai —a;—1]| < ||al|: From the

definition of || - ||, Z’;’:jhl |lai —ai—1] = Z?:jlﬂ la; —ai—1]|—(n+1—(j+1)+1). Then,

ntl n+1
Yolai—aia|l-(n+1-G+1)+1) > | Y ai—aial-(r+1-(G+1)+1)
=1 .trlangl'e i=j+1
inequality

= Nany1—ajl=(n+1-j)=In+1-aj|-(n+1-j)=j—a;=|j—q
telescopic
sum

14

From Lemma 4.2.1 we get that in order for a word w to attain a small cost, it
must be accepted with a jump sequence that stays close to the sequential head. More

precisely:

Corollary 4.2. Let k € N and consider a word w such that Asps(w) < k, then there
exists a jumping sequence a € Jy, such that wa € £(A) and for all 1 < j < n we have
laj — j| < k.

We now turn to the construction of an NFA that recognizes the words whose cost

is at most k.

Lemma 4.2.2. Let k € N. We can effectively construct an NFA B such that £(B) =
{w ex* ’ AABs(w) < k}

Proof. Let k € N. Intuitively, B works as follows: it remembers in its states a window
of size 2k 4+ 1 centered around the current letter (recall that as an NFA, B reads its
input sequentially). The window is constructed by nondeterministically guessing (and
then verifying) the next k letters, and remembering the last k letters.

B then nondeterministically simulates a jumping sequence of A on the given word,
with the property that the jumping head stays within distance k£ from the sequential
head. This is done by marking for each letter in the window whether it has already
been read in the jumping sequence, and nondeterministically guessing the next letter to
read, while keeping track of the current jumping head location, as well as the total cost
incurred so far. After reading a letter, the window is shifted by one to the right. If at
any point the window is shifted so that a letter that has not been read by the jumping
head shifts out of the 2k + 1 scope, the run rejects. The correctness of the construction
follows from Corollary 4.2. We now turn to the formal details. Let A = (X, Q, J, Q. F).
We define B = (X, Q’, 0, Qy, F') as follows.

The state space of Bis Q' = Q x (X x {2, v })™FF x {—k,...,k} x{0,...,k}. We
denote a state of B as (g, f, 7, c) where ¢ € Q isastateof A, f: {—k,...,k} = Ex{?,v}
represents a window of size 2k 4+ 1 around the sequential head (the sequential head is
always at index 0), where v/ marks letters that have already been read by A (and ?
marks the others), j represents the index of the head of A relative to the sequential
head, and ¢ represents the cost incurred thus far in the run. We refer to the components
of fas () = (f()1, F(j)s) with f(j)1 € = and f(j)s € {7, }.

The initial states of B are Qf, = {(¢, .7, —1) | ¢ € QoA j>0A(f(i)2 =V —
i <0)}. That is, all states where the state of A is initial, the location of the jumping
head is some j > 0 incurring a cost of j — 1 (i.e, the initial jump A makes), and the
window is guessed so that everything left of the first letter is marked as already-read
(to simulate the fact that A cannot jump to the left of the first letter).

The transitions of B are defined as follows. Consider a state (g, f,7,c) and letter
o€ X, then (¢, f,7,c)€d((q,f, j,c) o) if and only if the following hold:

15

f(1); = 0. That is, we verify that the next letter in the guessed window is indeed

correct.

f(=k)2 = v'. That is, the leftmost cell has been read. Otherwise by Corollary 4.2

the cost of continuing the run must be greater than k.

f(j)2 # v and f'(j—1) = v (if j > —k). That is, the current letter has not been
previously read, and will be marked as read from now on (note that the index j

before the transition corresponds to index j — 1 after).
q =94(q, f(4)1), i.e. the state of A is updated according to the current letter.

d=c+|j'+1—j|—1, since j' represents the index in the shifted window, so in
the "pre-shifted” tape this is actually index 5’ +1. We demonstrate this in Figure
4.1. Also, ¢ < k by the definition of Q).

f'(i) = f(i +1) for i < k. That is, the window is shifted and the index f'(k)
is nondeterministically guessed (note that the guess could potentially be v, but

such a guess cannot lead to an accepting state).

T

4 -3 -2 -1 0 1 2 3 4
av | BT || e? [uv | n? | &7 [xv | 6?

I I

\

4 3 2 -1 0 1 2 3 4
BY [| e? [u | m? | &7 | xv | 67 | T

Figure 4.1: A single transition in the construction of Lemma 4.2.2.

In Figure 4.1, The semi-transparent arrow signifies the sequential head, while the

opaque arrow is the ”imaginary” jumping head. Here, the head jumps from —3 to 2,

incurring a cost of 4, but in the indexing after the transition £ is at index 1, thus the

expression given for ¢ in the construction. Note that the letter being read must be p,

and that o must be checked, otherwise the run has failed.

Finally, the accepting states of B are F' = {(q, f,1,¢) | g € FAc < kA f(j)2 =

? for all 7 > 0}. That is, the state of A is accepting, the overall cost is at most k, the

location of the jumping head matches the sequential head (intuitively, location n + 1),

and no letter beyond the end of the tape has been used.

16

It is easy to verify that B indeed guesses a jump sequence and a corresponding run
of A on the given word, provided that the jumping head stays within distance k of
the sequential head. By Corollary 4.2, this restriction is complete, in the sense that if
Apps(w) < k then there is a suitable jump sequence under this restriction with which

w is accepted. |

We can now easily conclude the decidability of the boundedness problems for the
ABS semantics. The proof makes use of the decidability of emptiness for Parikh Au-
tomata [KRO3].

Theorem 4.3. The following problems are decidable for the ABS semantics: k-BOUNDEDNESS,
PARAM-BOUNDEDNESS, UNIV-k-BOUNDEDNESS and UNIV-PARAM-BOUNDEDNESS.

Proof. Consider a JFA A and k € N (k is either fixed or given as input, which does
not affect decidability), and let B be the NFA constructed as per Lemma 4.2.2. In
order to decide UN1V-k-BOUNDEDNESS and UNIV-PARAM-BOUNDEDNESS, observe that
Apps(w) < k for every word w € ¥* if and only if £(B) = ¥*. Since the latter is
decidable for NFA, we have decidability.

Similarly, in order to decide k-BOUNDEDNESS and PARAM-BOUNDEDNESS, observe
that Aaps(w) < k for every word w € J(A) if and only if J(A) C £(B). We can
decide whether the latter holds by constructing the PA (B,.A) where B is an NFA for
the complement of £(8), and checking emptiness. Since emptiness for PA is decidable
[KRO03], we conclude decidability. []

With further scrutiny, we see that the size of B constructed as per Lemma 4.2.2 is
polynomial in the size of A and single exponential in k. Thus, UNIV-k-BOUNDEDNESS
is in fact decidable in PSPACE.

4.3 PSPACE-Hardness of boundedness for ABS

In the following, we complement the decidability result of Theorem 4.3 by showing that
already UNIV-k-BOUNDEDNESS is PSPACE-hard, for every k € N.
We first observe that the absolute distance of every word is even. In fact, this true

for every jump sequence.

Lemma 4.3.1. Consider a jump sequence a = (ag a1 ... an an+1), then ||al| is even.

Proof. Observe that the parity of |a; — a;—1]| is the same as the parity of a; — a;—1. It
follows that the parity of ||a|| = X7 [la; — ay || = S0 |ai — ai—1| — 1 is the same as
that of:

n+1 n+1
lai—aica| —1=()_a1—ais1)) —(n+1)=n+1—(n+1)=0
i=1 i=1

and is therefore even (the penultimate equality is due to telescopic sum). |

17

We are now ready to prove the hardness of UNIV-k-BOUNDEDNESS. Observe that
for a word w € ¥* we have that Aapg(w) = 0 if and only if w € £(A) (indeed, a cost of
0 implies that that an accepting jumping sequence is the sequential run 0,1, ..., |w|+1.
In particular, we have that Aapg is O-bounded if and only if £(A4) = ¥*. Since the
universality problem for NFAs is PSPACE-complete, this readily proves that UN1v-0-
BoOUNDEDNESS is PSPACE-hard. Note, however, that this does not imply that UN1v-k-
BOUNDEDNESS is also PSPACE-hard for other values of k, and that the same argument

fails for £ > 0. We therefore need a slightly more elaborate reduction.

Lemma 4.3.2. For ABS the UNIV-k-BOUNDEDNESS and k-BOUNDEDNESS are PSPACE-
hard for every k € N.

Proof. In order for the reduction to work both for UNIV-k-BOUNDEDNESS and k-
BOUNDEDNESS, we start with an initial transformation of the given NFA A to an NFA
A’ as follows. Given A, we introduce a fresh symbol $ to the alphabet, and modify it
so that reading $ from every state can either stay at the same state, or transition to a
new accepting state gg. From gg no letters can be read. A’ then satisfies the following
property: if £(A) = £* then £(A’) = (X U{$})*, and if £(A) # X* then there exists a
word x ¢ £(A’) such that € J(A"). Indeed, for every (non-empty) word = ¢ £(.A) we
have that $z ¢ £(A’) but 28 € £(A"). We henceforth identify A with A’, and use this
property in the proof.

By Lemma 4.3.1, we can assume without loss of generality that k is even. Indeed,
if there exists m € N such that Axgs(w) < 2m + 1 for every w € ¥*, then by Lemma
4.3.1, we also have Axps(w) < 2m. Therefore, we can assume k = 2m for some m € N.

We reduce the universality problem for NFAs to the UNIV-2m-BOUNDEDNESS prob-
lem. Consider an NFA A = (Q,X,d,Qo, F'). We first check whether € € £(.A) (i.e, we
check whether Qo N F # (). If e ¢ £(A), we output some fixed unbounded automaton
B (e.g., as in Example 3.3.1). Observe that since € ¢ £(.A) then A is not univer-
sal, preserving the reduction correctness in this case. We assume from now on that
e € L£(A).

Now let © ¢ ¥ be a fresh symbol. Intuitively, we obtain from .4 an NFA B over the
alphabet ¥ U {Q} such that w € £(B) if and only if the following hold:

1. Either w does not contain m occurrences of Q, or

2. w contains exactly m occurrences of O, but does not start with O, and w|y, € £(.A)

(where w|y, is obtained from w by removing all occurrences of ©), or
3. w= O™ (think of this as an exception to Condition 2 where w|sy = €).

Constructing B from A is relatively straightforward by taking m + 1 copies of A to
track the number of Os in the word. In particular, the reduction is in polynomial time.

We claim that £(A) = ¥* if and only if Bagg is 2m-bounded. For the first direction,
assume £(A) = X*. Let w € (XU {QO})*.

18

1. If w € £(B) then Baps(w) =0 < 2m.

2. If w ¢ £(B) then w starts with O but has exactly m occurrences of © and at
least one letter which is not . Let j be the first index which does not contain
Q. Observe that j < m + 1 since there are at most m consecutive Us at the start

of w. The following jump sequence a causes B to accept wa:
a=0j12...7-1j+1j+2 ... |w||w+1)

Indeed, w, does not start with ©, has exactly m occurrences of O, and w|y €
£(A) = ¥*, so Condition 2 holds. Finally, note that ||al| < 2m (since the only
non-zero jumps are 0 to j, j to 1, and 7 — 1 to j + 1).

For the converse, assume £(A) # ¥*. Let z ¢ £(A). Since € € £(A) by the
treatment of this case above, x # ¢. We also can assume by the identification of A with
A’ that x € J(A). Now consider w = O™z. We claim that Bags(w) > 2m. Indeed, let
a be a jump sequence such that w, € £(B) (if there isn’t a jump sequence like that,
then Baps(w) = 0o and we are done). Then, a; > m+ 1, contributing a cost of at least
m to a. It can easily be seen by induction over m that in order for a to cover the entries
1,...,m starting at position m + 1 and ending at position m + 2, it requires cost of at
least another m (moreover, if the ending position is greater than m 42, then the overall
cost is already greater than 2m). Then, however, in order for w, to be accepted by B,
it must hold that w,|y, # , so a is not the identity starting from m + 1. It therefore
has an additional cost of at least 1. Thus, [|a|| > 2m. In particular, Bags(w) > 2m, so
B is not 2m-bounded. Note that w € J(B), since = € J(A). Thus, we are done both in

the universal and non-universal settings. |

Lemma 4.3.2 shows hardness for fixed k, and in particular when k is part of the in-
put. Thus UNIv-PARAM-BOUNDEDNESS and PARAM-BOUNDEDNESS are also PSPACE-
hard, and UNIv-k-BOUNDEDNESS is PSPACE-complete.

19

20

Chapter 5

The Reversal Semantics

5.1 The Membership Problem for REV

We now study the reversal semantics. Recall from Definition 3.2.2 that for a JFA A
and a word w, the cost Argv(w) is the minimal number of times the jumping head
changes "direction” in a jump sequence for which w is accepted.

Consider a word w with |w| = n and a jump sequence a = (ag a1 ... ap Gpt1)-
We say that an index 1 < i < n is a turning index if a; > a;—1 and a; > a;41 (i.e., a
right-to-left turn) or if a; < a;—1 and a; < a;41 (i.e., a left-to-right turn). We denote
by Turn(a) the set of turning indices of a.

ai a2 a3 a4 as ae ay as

FEzample 5.1.1. For example, consider the jump sequence (%) 2357416 8),then
Turn(a) = {4,6}.

Note that the cost of w is then Argyv(w) = min{Turn(a) | wa € £(A)}. Viewed
in this manner, we have that Argyv(w) < |w|, and computing Turn(a) can be done in
polynomial time. The reader would recall that in order to prove Theorem 4.1 we used
the fact that k can be bounded in polynomial time in the size of w. Thus, identically

we have the following.

Theorem 5.1. The problem of deciding, given A and k, whether Arpy(w) < k is
NP-complete.

Remark. For every jump sequence a we have that |Turn(a)| is even, since the head
starts at position 0 and ends at n+ 1, where after an odd number of turning points the

direction is right-to-left, and hence cannot reach n + 1.

5.2 Decidability of Boundedness Problems for REV

We begin by characterizing the words accepted using at most k reversals as a shuffle of

subwords and reversed-subwords, as follows.

21

Definition 5.2.1. Let x,y € ¥* be words, we define their shuffle to be the set of words

obtained by interleaving parts of x and parts of y. Formally:
vwo={x;-y1-T2-Y2...Tn Yn | Vi, yi EX ANu=2122... 20 N V=Y1Y2...Yn}

Ezxample 5.2.2. If © = aab and y = cd then xly contains the words aabed, acabd,
caadb, among others (the colors reflect which word each subword originated from).
Note that the subwords may be empty, e.g., caadb, can be seen as starting with ¢ as a

subword of z.

It is easy to see that LU is a associative operation, so it can be extended to any finite
number of words.

As we will soon see, intuitively, if Argpyv(w) < k, then w can be decomposed to
a shuffle of at most k + 1 subwords of itself, where all the even ones are reversed

(representing the left-reading subwords). These subwords are the defined as follows.

Definition 5.2.3. Consider a word w € ¥* and a jump sequence a € Jj,,|. Write
Turn(a) = {il,ig,...,il} where i3 < i3 < ... < ¢; and set igp = 0 and ¢;4+; = n + 1.
Then, for every 1 < 5 < [+ 1, the j-th turning subword of w with regard to a is

S5 = waijilwaijiﬁl e ’U)aij_l.

a1 a2 a3z a4 as

Ezample 5.2.4. If w = abcd and a = ((60 24T 3 5) then Turn(a) = {2,3}, wa =
bdac, s; = b, so = d and s3 = ac. In the case of sequential reading (e.g., when

a=(012345)), s; =abed is the only turning subword of w.

Lemma 5.2.5. Let k € N. Consider an NFA A and a word w € ¥*. Then Arpyv(w) <
k iff there exist words s1, 82, ...,Skr1 € X° such that the following hold.

1. s1s2.. .Sk+1 € S(A)

R

2. w € sy W s sz sgB ... Wspyy (where s;T is the reverse of s;).

Proof. For the first direction, assume Agrgy(w) < k, so there exists a jump sequence a
such that |Turn(a)| < k and w, € £(A). Let s1,82,...,841 be the turning subwords
of w with regard to a. If [+1 < k+ 1 we define s;y9,...,5,+1 to be e. To avoid
cumbersome indexing, we assume [+ 1 = k + 1 in the following.

It is easy to see that conditions 1 and 2 hold for s1, so, . .., sgr1. Indeed, by definition
we have s152---skr1 € £(A), so condition 1 holds. For condition 2, observe that for
every 1 < i < k41, if ¢ is odd, then s; consists of an ascending sequence of letters,
and if 7 is even then s; is a descending sequence. Since the s; form a partition of the

R Ry, wspyr (by shuffling

letters of w, we can conclude that w € s1 LI s9* LI 83 LI 84
the letters of these words to form exactly the sequence of indices 1, ..., |w]).
For the converse, consider words sy, s9, ..., Sg+1 such that conditions 1 and 2 hold.

By condition 2, we see that the word s1s2 - - - sp+1 is a permutation of w, and moreover

22

- from the way w is obtained in s1 LU so® L s3 LU 547 LU ... W Sk+1 We can extract a
jump sequence a such that wa = $152 - - - sp11 and such that the turning subwords of a
are exactly s, s2%, ..., sp1. Indeed, this follows from the same observation as above
- for odd 7 we have that s; is an increasing sequence of indices, and for even ¢ it is

decreasing. In particular, |Turn(a)| < k, so Aggv(w) < k. [|

Using the characterization in Lemma 5.2.5, we can now construct a corresponding
NFA, by intuitively guessing the shuffle decomposition and running copies of A and its

reverse in parallel.

Lemma 5.2.6. Let k € N and consider a JFA A. We can effectively construct an NFA
B such that £(B) = {w € £* | Arpy(w) < k}.

Proof. The overall plan is to construct B so that it captures the condition in Lemma
5.2.5. Intuitively, B keeps track of k + 1 coordinates, each corresponding to a turning
subword (that are nondeterministically constructed). The odd coordinates simulate the
behavior of A, whereas the even ones simulate the reverse of A. In addition, BB checks
(using its initial and accepting states) that the runs on the subwords can be correctly
concatenated. We proceed with the precise details.

Denote A = (X, Q, 9, Qo, F'). We construct B = (X,Q’, ', Qp, F') as follows. Q' =
Q"+ and the initial and final states are:

Qo ={(q1,92, -, qk+1) | @1 € Qo A ¢ = gi1 for all even i}
F'={(q1,92,--,qk+1) | @1 € F A q; = gi11 for all odd i}

For the transiction function, we have that (¢g,q},.-.,q,) € 0'((q0,q1,---,qx),0) if
and only if there exists a single 1 < j < k + 1 such that qg- € 0(gj,0) if j is odd, and
gj €0 (q}, o) if j is even (this represents the reverse words in Lemma 5.2.5). In addition,
for every i # j, it holds that ¢} = ¢;.

We turn to show the correctness of B. Consider an accepting run p of B on some
word. Then p starts at state (¢1, ¢, ..., qr+1) € Qf and ends at state (s1, S2,...,Sk+1) €
F’. By the definition of &', we can split p according to which component "progresses”

k+1 where p°

in each transition, so that p can be written as a shuffle of run p',...,p
leads from ¢; to s; in A if i is odd, and p’ leads from g; to s; in the reverse of A if i is
even. The latter is equivalent to (p°)® (i.e., the reverse run of p’) leading from s; to ¢;
in A if 7 is even.

We now observe that these runs can be concatenated as follows: Recall that ¢; € Qg
(by the definition of Qf). Then, p! leads from ¢; to s; in A. By the definition of F we
have 51 = so, and (p?) leads from s3 to g2 in A. Therefore, p!(p?)® leads from q; to
¢2 in A. Continuing in the same fashion, we have ¢a = ¢3, and p? leading from g3 to

s3, and so on up to Sg41.

23

Thus, we have that p!(p?)%p3 .- (p*)pF*1 is an accepting run of A.
By identifying each accepting run p’ with the subword it induces (and reversing the
subwords for even 7), we have that w € £(B) if and only if there are words si, ..., Sgt+1

such that the two conditions in Lemma 5.2.5 are satisfied. [|

The proof of Lemma 9 shows that the size of B is polynomial in the size of A and
single-exponential in k, giving us PSPACE membership for UNIV-k-BOUNDEDNESS.
We can also conclude decidability for the rest of the boundedness problems using the

same techniques as in the ABS case.

Theorem 5.2. The following problems are decidable for the REV semantics: k-
BOUNDEDNESS, PARAM-BOUNDEDNESS, UNIV-k-BOUNDEDNESS and UNIV-PARAM-
BOUNDEDNESS.

5.3 PSPACE-Hardness of Boundedness for REV

Following a similar scheme to the Absolute Distance Semantics of Chapter 4, observe
that for a word w € ¥* we have that Argv(w) = 0 if and only if w € £(.A), which
implies that UN1v-0-BOUNDEDNESS is PSPACE-hard. Yet again, the challenge is to
prove hardness of UNIV-k-BOUNDEDNESS for all values of k.

Theorem 5.3. For REV, UNIV-k-BOUNDEDNESS is PSPACE-complete for every k €
N.

Proof. By Remark 2 we can assume without loss of generality that k is even, and
we denote kK = 2m. We reduce the universality problem for NFAs to the UNIV-2m-
BOUNDEDNESS problem. Consider an NFA A = (X,Q,0,Qo, F), and let O, & ¢ ¥ be
fresh symbols. We first check whether € € £(.A). If € ¢ £(.A), then £(A) # ¥* and we
output some fixed unbounded automaton B (e.g., as in Example 3.3.1).

Otherwise, we obtain from A an NFA B over the alphabet ¥ (J{Q, &} such that
w € £(B) if and only if the following hold:

1. Either w does not contain exactly m occurrences of ¢ and of #, or

2. w= (VM) where x € £(A) (in particular z € ¥*).

Constructing B from A is straightforward as the union of two components: one that
accepts words that satisfy condition 1 (using 2m + 1 states) and one for condition 2,
which prepends to A a component with 2m states accepting (O#)™. In particular, the
reduction is in polynomial time.

We then have the following: if £(.A) = £*, then for every w € (XU{©, &})*, if w
satisfies condition 1, then Brpy(w) = 0. Otherwise, w has exactly m occurrences of O
and of #. Denote the indices of O by i1 < iy < ... < iy and of @ by j1 < jo < ... < jm.

24

Also denote by t1 < to < ... < t, the remaining indices of w. Then consider the jump

sequence

a:(0i1j1 ’L'ng imjmtl tg trn—|—1)

We claim that wa € £(B) by condition 2. Indeed, w starts with (O#)™, followed
by letters in ¥ composing a word x. Since z € £(A) = ¥*, we have that condition
2 holds. In addition, observe that t; < t3 < ... < t, < n + 1, then Turn(a) C
{i1,J1, -+ im, Jm, to}, and in particular |Turn(a)| < 2m + 1.

Moreover, by Remark 2 we know that |Turn(a)| is even, so in fact |[Turn(a)| < 2m =
k. We conclude that Brry(w) < k, so B is k-bounded.

Conversely, if £(A) # X*, take x ¢ £(A) such that x # e (which exists since we
checked above that € € £(.A)). Consider the word w € #™Q™z, then have w ¢ £(B).
We claim that Brey(w) > 2m. Indeed, if there exists a such that w, € £(B), then
since w has exactly m occurrences of # and of ¢, it must be accepted by condition
2. By the structure of w, the jump sequence a needs to permute #Q™ into (V).
Intuitively, this means that the head must jump "back and forth” for 2m steps. More
precisely, for every i € {1,...,|w|} it holds that

{m+1,...,2m}, i<2misodd
ai € ${1,...,m}, i < 2m is even
{2m+1,...,|wl}, ©i>2m
In particular, {1,...,2m} C Turn(a). Observe that the remaining suffix of ws,
starting at 2m + 1 cannot be x, since = ¢ £(.A), so a is not the identity starting from

2m+1. It therefore has an additional reversal cost of at least 1. Thus, |Turn(a)| > 2m.

In particular, Brgy(w) > 2m, so B is not 2m-bounded, and we are done. |

As in Section 4.3, it follows that k-BOUNDEDNESS, UNIV-PARAM-BOUNDEDNESS
and PARAM-BOUNDEDNESS are also PSPACE-hard.

25

26

Chapter 6

The Hamming Semantics

6.1 The Membership Problem for HAM

Recall from Definition 3.2.4 that for a JFA A and word w, the cost Agan(w) is the
minimal Hamming distance between w and w’ where w’ ~ w and w’ € £(A).
We establish the complexity of the Membership problem for HAM.

Theorem 6.1. The problem of deciding, given A and k € N, whether Agan(w) < k
is NP-complete.

Proof. By definition we have that Agan(w) < |w| for every word w € J(A). Thus, in
order to decide whether Agan(w) < k we can nondeterministically guess a permutation
w' ~ w and verify that w' € £(A) and that dy(w,w’) < k. Both conditions are
computable in polynomial time. Therefore, the problem is in NP.

Hardness follows (similarly to the proof of Theorem 4.1) by reduction from mem-
bership in JFA, noting that w € J(A) if and only if Agam(w) < |w|. [|

6.2 Decidability of Boundedness Problems for HAM

Similarly to 4.2 Sections and 5.2, in order to establish the decidability of UNIV-PARAM-BOUNDEDNESS,
we start by constructing an NFA that accepts the words w for which Agan(w) < k.

Lemma 6.2.1. Let k € N. We can effectively construct an NFA B with £(B) = {w €
¥ | Agam(w) < k}.

Proof. Let k € N. Intuitively, B works as follows: while reading a word w sequentially,
it simulates the run of A, but allows A to intuitively "swap” the current letter with a
(nondeterministically chosen) different one (e.g., the current letter may be a but the
run of A can be simulated on either a or b). Then, B keeps track of the swaps made
by counting for each letter a how many times it was swapped by another letter, and
how many times another letter was swapped to it. This is done by keeping a counter

ranging from —k to k, counting the difference between the number of occurrences of

27

each letter in the simulated word versus the actual word. We refer to this value as the
balance of the letter. B also keeps track of the total number of swaps. Then, a run is
accepting if at the end of the simulation, the total amount of swaps does not exceed k,
and if all the letters end up with 0 balance.

We now turn to the formal details. Recall that A = (X,Q, 0, Qo, F). We define
B=(%,Q,§, Q) F'). The state space of Bis Q' = Q x {—k,...,k}* x {0,...,k}. We
denote a state of B by (q, f, c) where g € @ is the current state of A, f : ¥ — {—k, ..., k}
describes for each letter its balance and ¢ € {0,...,k} is the total number of swaps
thus far.

The initial states of B are Q) = {(q, f,0) | ¢ € Qo A f(0) =0 for all o € ¥}. That
is, we start in an initial state of A with balance and total cost of 0. The transition
function is defines as follows. Consider a state (¢, f,c¢) and a letter 0 € X, then
(d,f,c) e §((q f,c),o) if and only if either ¢ € d(q,0) and f' = f and ¢ = ¢,
or there exists 7 € X, 7 # o such that ¢’ € §(¢,7), ¢ = + 1, f'(o0) = f(o) — 1, and
f'(t) = f(r) + 1. That is, in each transition we either read the current letter o, or
swap for a letter 7 and update the balances accordingly.

Finally, the accepting states of B are F' = {(q, f,¢) | ¢ € FAf(c) =0 for all 0 € X}.

In order to establish correctness, we observe that every run of B on a word w
induces a word w’ (with the nondeterministically guessed letters) such that along the
run the components f and c of the states track the swaps made between w and w’. In
particular, ¢ keeps track of the number of total swaps, and > ¢y, f(0) = 0. Moreover,
for every word o, the value f(o) is exactly the number of times o was read in w’ minus
the number of times o was read in w.

Since B accepts a word if f = 0 at the last state, it follows that B accepts if and
only if w’ ~ w, and the run of A on w’ is accepting. Finally, since ¢ is bounded by &
and is increased upon each swap, then limiting the image of f to values in {—k,... k}
does not pose a restriction, as they cannot go beyond these bounds without ¢ going
beyond the bound k as well. |

An analogous proof to Theorem 4.3 gives us the following.

Theorem 6.2. The following problems are decidable for the HAM semantics: k-
BOUNDEDNESS, UNIV-k-BOUNDEDNESS and UNIV-PARAM-BOUNDEDNESS.

We note that the size of B constructed in Lemma 6.2.1 is polynomial in k& and
single-exponential in ||, and therefore when ¥ is fixed and k is either fixed or given in

unary, both UN1v-k-BOUNDEDNESS and UNIV-PARAM-BOUNDEDNESS are in PSPACE.

6.3 PSPACE-Hardness of Boundedness for HAM

Following a similar scheme to the Absolute Distance and Reversal Semantics of Chap-

ters 4 and 5, observe that for a word w € ¥* we have that Agan(w) = 0 if and

28

only if w € £(A), which implies that UNIV-0-BOUNDEDNESS is PSPACE-hard. Also
it is not hard to prove using similar tricks that UNIv-k-BOUNDEDNESS is PSPACE-
hard. But in the HAM semantics case, since UNIV-PARAM-BOUNDEDNESS is already
PSPACE-complete, then UNIV-k-BOUNDEDNESS is somewhat redundant. We there-
fore make do with the trivial lower bound whereby we reduce universality of NFA to

UNIV-0-BOUNDEDNESS.

Theorem 6.3. For HAM, the UNIV-PARAM-BOUNDEDNESS problem is PSPACE-complete
for k coded in unary and fixed alphabet X.

29

30

Chapter 7
Interplay Between the Semantics

Having established some decidability results, we now turn our attention to the interplay
between the different semantics, in the context of boundedness. We show that for a
given JFA A, if Axpg is bounded, then so is Agam, and if Agan is bounded, then so
is Argv. We complete the picture by showing that these are the only relationships -

we give examples for the remaining cases.

Theorem 7.1. Consider a JFA A. If Agan s bounded, then Argy is bounded.

Proof. Consider a word w € ¥* we show that if Agay(w) < k for some £ € N
then Arpv(w) < 3k. Assume Apan(w) < k, then there exists a jump sequence
a=(ap ... apt1) such that wy € £(A) and w, differs from w in at most k indices.
We claim that we can assume without loss of generality that for every index i such
that w,, = w; we have that a; = i (i.e., i is a fized point). Intuitively - there is no
point swapping identical letters. Indeed, assume that this is not the case, and further
assume that a has the minimal number of fixed points among such jump sequences.
Thus, there exists some j for which a; # j but w,; = w; Let m be such that a,, = j,
and consider the jump sequence a’ = (ay,...,a;) obtained from a by composing

the swap (a; am). Then, for every i ¢ {j,m} we have that a; = a;. In addition,

r_
L=
those of a and j). However, we claim that wa = wa. Indeed, the only potentially

a; = amy = j as well as a],, = a;. In particular, a’ has more fixed points than a (exactly
problematic coordinates are a; and ap,. For j we have w,;, = w; = Wy and for m we
have wy = wq; = wj = wWg,,. This is a contradiction to a having a minimal number
of fixed points, so we conclude that no such coordinate a; # j exists.

Next, observe that Turn(a) C {i | a; # iV aj41 # i+ 1V a;i—1 #i— 1}. Indeed,
ifa;_1 =i—1, a; =1 and a;41 = ¢ + 1 then clearly ¢ is not a turning index. By the
property established above, we have that w,, = w;, if and only if a; = 7. It follows that
Turn(a) C {i | wq; # Wi V Wq,,, 7 Wit1 V Wa,_, # wi—1}, so [Turn(a)| < 3k (since each

index where w, # w is counted at most 3 times in the latter set). |
Theorem 7.2. Consider a JFA A. If Aasps is bounded, then Agap is bounded.

31

Proof. Consider a word w € ¥*, we show that if Axps(w) < k for some k € N that
Apgam(w) < (2k4+1)(k+1). Assume Axps(w) < k, then there exists a jump sequence
a = (ag ... ant1) such that ||al| < k and wa € £(A). In the following we show that
a; =1 for all but (2k + 1)(k + 1) indices, i.e., |i | a; #i| < (2k+ 1)(k + 1).

It is convenient to think of the jumping head moving according to a in tandem with
a sequential head moving from left to right. Recall that by Lemma 4.2.1, for every
index ¢ we have that 1 — k < a; < i+ k, i.e. the jumping head stays within distance &
from the sequential head.

Consider an index ¢ such that a; # i (if there is no such index, we are done). We
claim that within at most 2k steps, A performs a jump of cost at least 1 according to
a. More precisely, there exists ¢ +1 < j < i + 2k such that |a; — aj_1] > 1. To show

this we split to two cases:

e If a; > i, then there exists some m < i such that m has not yet been visited
according to a (i.e., by step 7). Index m must be visited by a; within at most k
steps (otherwise it becomes outside the i — k, i + k window around the sequential
head), and since a; > 4, it must perform a "left jump” of size at least 2 (otherwise

it always remains to the right of the sequential reading head).

e If a; < i, the there exists some m > ¢ such that m has already been visited by
step 7 according to a. Therefore, within at most 2k steps, the jumping head must
skip at least over this position (think of m as a hurdle coming toward the jumping
head, which must stay within distance & of the sequential head and therefore has

to skip over it). Such a jump incurs a cost of at least 1.

Now, let B = {i | a; # i} and assume by way of contradiction that |B| > (2k +
1)(k + 1). By the above, for every i € B, within 2k steps the run incurs a cost of
at least 1. While some of these intervals of 2k steps may overlap, we can still find at
least k + 1 such disjoint segments (indeed, every i € B can cause an overlap with at
most 2k other indices). More precisely, there are iy < is < ... < ixy1 in B such that
ij > i;—1 + 2k for all j, and therefore each of the costs incurred within 2% steps of
visiting ¢; is independent of the others. This, however, implies that ||a|| > &+ 1, which
is a contradiction, so |B| < (2k 4+ 1)(k + 1).

It now follows that Apan(w) = [{i | wa, # wi}| < |{i]|a;i # i} < (2k+1)(k+1).1

Combining Lemmas 7.1 and 7.2 we have the following.

Corollary 7.3. Consider a JFA A. If Asg is bounded, then Argv is bounded.

We proceed to show that no other implication holds with regard to boundedness,
by demonstrating languages for each possible choice of bounded/unbounded semantics

(c.f. Remark 1). The examples are summarized in Table 7.1, and are below.

32

ABS HAM REV ‘ Language ‘
Bounded Bounded Bounded (a+0b)*
Unbounded | Bounded Bounded | (a+b)*a
Unbounded | Unbounded | Bounded a*b*
Unbounded | Unbounded | Unbounded (ab)*

Table 7.1: Examples for every possible combination of bounded /unbounded semantics.
The languages are given by regular expressions (e.g., (a4 b)*a is the language of words
that end with a).

Ezample 7.0.1. The language (a+ b)* is bounded in all semantics. This is trivial, since

every word is accepted, and in particular has cost 0 in all semantics.

Ezample 7.0.2. The language (a + b)*a is bounded in HAM and REV semantics, but
unbounded in ABS. Indeed, let A be an NFA such that £(A) = (a+ b)*a and consider
a word w € J(A), then w has at least one occurrence of a at some index i. Then, for
the jumping sequence a = (0,1,2,...,i —1,n,i+ 1,...,n — 1,i,n + 1) we have that
wa € £(A). Observe that dy(wa,w) < 2 (since w, differs from w only in indices ¢ and
n), and Turn(a) C {i,n}, so Aganm < 2 and Aggy < 2.

For ABS, however, consider the word ab™ for every n € N. Since the letter ¢ must
be read last, then in any jumping sequence accepting the word, there is a point where
the jumping head is at index n and the sequential head is at position 1. By Lemma
4.2.1, it follows that Aaps(w) > n — 1, and by increasing n, we have that Aapg is

unbounded.

Ezxample 7.0.3. The language a*b* is bounded in the REV semantics, but unbounded
in HAM and ABS. Indeed let A be an NFA such that £(A) = a*b* and consider a
word w € J(A), and denote by i; < iz < ... < it the indices of a's in w in increasing
order, and by j1 < jo < ... < jn—k the indices of b’s in decreasing order. Then, for
ik j1 -+ Jn—k n+ 1) we have that w, € £(A), and
Argv < 2 (since the jumping head goes right reading all the a’s, then left reading all
the b’s, then jumps to n + 1).

the jumping sequence a = (i1 ...

For HAM, consider the word w = b"a™ for every n € N. The only permutation of
w that is accepted in £(A) is v’ = a™b", and dy(w,w’) = 2n so Agay is unbounded.
By Lemma 7.2 it follows that Aapgg is also unbounded.

Ezample 7.0.4. The language (ab)* is unbounded in all the semantics. Indeed, let .4
be an NFA such that £(A) = (ab)*, then by Lemma 7.1 and Corollary 7.3 it suffices to
show that Argy is unbounded.

Consider the word w = b"a™ for every n € N, and let a = (ag a1 ... ag, azp+1)
such that w, € (ab)*, then for every odd i we have a; € {n+1,...,2n} and for every
even i < 2n we have a; € {1,...,n}. In particular, every index 1 < i < 2n is a turning

point, so Argv(w) = 2n and Aggy is unbounded.

33

34

Chapter 8

Conclusion and open questions

8.1 Conclusion

Quantitative semantics are often defined by externally adding some quantities (e.g.,
weights) to a finite-state model, usually with the intention of explicitly reasoning about
some unbounded domain. It is rare and pleasing when quantitative semantics arise
naturally from a Boolean model. In this work, we studied three such semantics: the
Absolute Distance semantic, the Reversal semantic and the Hamming semantic.

We established decidability for some boundedness problems variants for these se-
mantics, and gave lower bounds for some fragments (see Chapters 4-6).

Curiously, despite the semantics being intuitively unrelated, it turns out that they

give rise to interesting interplay (see Chapter 7).

8.2 An Open question

We argue that boundedness is a fundamental decision problem for the semantics we in-
troduce, as it measures whether one can make do with a certain budget for jumping. An
open question left in this research is existentially-quantified boundedness: whether there
exists some bound k for which Aggn is k-bounded. This problem seems technically
challenging, as in order to establish its decidability, we would need to upper-bound the
minimal k for which the automaton is k-bounded, if it exists. The difficulty arises from
two fronts: first, standard methods for showing such bounds involve some pumping ar-
gument. However, the presence of permutations makes existing techniques inapplicable.
We expect that a new toolbox is needed to give such arguments. Second, the construc-
tions we present for UNIV-PARAM-BOUNDEDNESS in the various semantics seem like
the natural approach to take. Therefore, a sensible direction for the existential case is
to analyze these constructions with a parametric k. The systems obtained this way,
however, do not fall into (generally) decidable cases. For example, in the HAM seman-
tics, using a parameter k we can construct a labelled VASS. But the latter do not admit

decidable properties for the corresponding boundedness problem. We remark that it

35

is conceptually possible that existential-boundedness is decidable without the bound
being constructive. This, however, seems somewhat unlikely, and we do not have any

reasonable techniques to tackle this problem in a non-constructive manner.

36

Bibliography

[Alm20]

[AY?23]

[Bok21]

[CEM11]

[CFM12]

[DKV09]

[FHY?21]

[FPS15]

[FS17]

[KRO3]

Shaull Almagor. Process symmetry in probabilistic transducers. In Founda-

tions of Software Technology and Theoretical Computer Science, 2020.

Shaull Almagor and Omer Yizhaq. Jumping automata over infinite words.
In Frank Drewes and Mikhail Volkov, editors, Developments in Language

Theory, pages 9-22, Cham, 2023. Springer Nature Switzerland.

Udi Boker. Quantitative vs. weighted automata. In Paul C. Bell, Patrick
Totzke, and Igor Potapov, editors, Reachability Problems, pages 3-18, Cham,
2021. Springer International Publishing.

Michagl Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh au-
tomata. Int. J. Found. Comput. Sci., 23:1691-1710, 2011.

Michagél Cadilhac, Alain Finkel, and Pierre McKenzie. Affine parikh au-
tomata. RAIRO Theor. Informatics Appl., 46:511-545, 2012.

Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. Springer Publishing Company, Incorporated, 1st edition, 2009.

Szilard Zsolt Fazekas, Kaito Hoshi, and Akihiro Yamamura. Two-way de-
terministic automata with jumping mode. Theoretical Computer Science,
864:92-102, 2021.

Henning Fernau, Meenakshi Paramasivan, and Markus L Schmid. Jumping
finite automata: characterizations and complexity. In Implementation and
Application of Automata: 20th International Conference, CIAA 2015, Umed,
Sweden, August 18-21, 2015, Proceedings 20, pages 89—101. Springer, 2015.

Paramasivan Fernau and Vorel Schmid. Characterization and complexity
results on jumping finite automata. Theoretical Computer Science, 679:31—
52, 2017.

Felix Klaedtke and Harald Ruess. Monadic second-order logics with cardinali-
ties. In International Colloquium on Automata, Languages and Programming,
2003.

37

[LPS14]

[Moh03]

[MS72]

IMZ12]

INA21]

[Vor18]

Giovanna J Lavado, Giovanni Pighizzini, and Shinnosuke Seki. Operational
state complexity under parikh equivalence. In Descriptional Complexity of
Formal Systems: 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 201/. Proceedings 16, pages 294-305. Springer, 2014.

Mehryar Mohri. Edit-distance of weighted automata. In Jean-Marc Cham-
parnaud and Denis Maurel, editors, Implementation and Application of Au-

tomata, pages 1-23, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Albert R Meyer and Larry J Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT, volume 72,
pages 125-129, 1972.

Alexander Meduna and Petr Zemek. Jumping finite automata. International
Journal of Foundations of Computer Science, 23(07):1555-1578, 2012.

Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-
letter transducers. Log. Methods Comput. Sci., 19, 2021.

Vojtéch Vorel. On basic properties of jumping finite automata. International
Journal of Foundations of Computer Science, 29(01):1-15, 2018.

38

nMN9 Nrya

NT)0V ,DOINND NDNRY MPPOINDN MY DPMNN NYION NPYa NN DDNN NYYaY 00 DN
DMINS NONY .YOP VMIVIX Y DM NYAP TN ONDN 1IPNA PONDNY IVWON ONN NTTIN
"y IMDN ¥9IPN VMVIND NOYY 5 k£ BOP ONN :BORD DY IMY3 NN I IPNNa DAY
NOYNoN CIDND TIVX) ,NOY MDD NN DDIAD T 1DV ,THPNI NN TR WD yan .k
LJPURT M0 ONYN YA OWIPN L0”P NN OR Lk "y 010N OMVIND 1NAYY O0»NN k-0 NN
MMNN SY MNONN NNE 0Y .M PO MNID NOND ONION MHINXND NPVLITIVD MOV
NYOINYD YTD WIN D00 DAND TNN YWY D8N DN .Y NY NPND MN»p Mpovs mnan
MO NN MNVYD MPPOINDA DONN NPYI NAY DPNND NNY NN 0N .IIRD DINYV
290199 k Oy 1990 Nan DR NMY RN OPPN 1YY PN P 100 .01 1oyavn Ivan

.YIOND OAIMIN OAPND (99 TIT2) DMIONDN XD NN OY I TITI MOAPNNY MOIYNN

iii

w NNIP AT "22IN01” YNINY DNYaN 1900 RN p SV MYYN DON NPPVINDI e
(T2 N ONNYD P NYNND PROY ONNDYN DYNNN MNYN XN mDD)

NIWINY NN NN ST DY NPPVIND Y 29Y w NDNN HY MOYN NN XTI DN 19N INND
MoYN NN

TN OOIN .O7INDID DOTIND KDY DPMND DOTIND DINMP DPVMIVIND DXON»NN 1IN ,TI9D
TITIND ,TIN NN ITINN 220 I9INI MYAN NITHIIYV MPPVINDN ,DINN DPMND DVDIVIND
95N ,TPYNT .NYI DIDNDTH NINY 290 111D MY Y NY DND T DY Hyav 191N Myan
09PN TIRD YNY 91DW KNP UKD OY ,(NOIP ,NNNTI) TIYNI NN MDY NIV NIV DY
TIYN NPPOINDY NHININ VIPN NNRIPA NYPYIND INDNIRD TO 199 ,0NINR DYNT URIN NN
POMTM PN INYI YRIND ,2DIN0N POXT NN NYY PNIDNIY NOIYNI L NANT NOIYD .OOMNN
P00 TPNA NN TPAPPYN MOYM PP IMIND 2N0ND PYNnD i 10D .ynnn NN ysan
DYNNN MOY NN NP2 NI0VN NN NUMHN TIONN NPPOIND WD M NPNY TIANDN
TS MM DAN PNITO 9N MOV VOPN IR NIRNPY NOIWN Oy 5oN0) ,NDIAD .MN NIPN2
SV 7NN NN NYAPNNN NDMN MDAV IO ,NINNI NNNX TN NADNN T DY NHY VOYPN NN

AYNIND NPPONDD MPRND MYITIN NN MIYN .TPNPHRN 120N

NYNIND MONRY

YOIP VYIVIN NN NYAIP RDOMYD INYI T NPPOINDY YINI NPYI 990N 071N DX PTIN VN
VIDY NNN NNOYW NP NN MO»YN N»yaYy OOXRIN DX L INYDD PN 190102 1Y w N’ DN
.MpPP0INoN

NoVa DOMN D5 0IY DRN DXOYONN LYY UMVIN NN BOND IMY3 NX 0) DIPIN DN
DXNON DOMN MPPONDN YDV NYID N Pya 2D DRI DX Lk Y D0N DY (1Pmndon)
YN OV NPANIN 19DNY DINNNN

Y910 VNMIVIN N VX ,MPONDIN NNX NNN DONN NMYA DY MPIDN DR I N Oy
OP YNNIV DN YD NAY NN DAPNN (PNITO J9IND WP NN XNP IWN) B romynivT N
LNONTO . DMIPIN VNN NMIN DPPOINDN DY MINMDN MNONT ONY) DX B 1 N80 k-1
TYN D952 ¥YOIPN WNID PNITON YRIN P2 PRINN DX MY ©IDND 112 VONIN TIYN NPPVYINDI

09PN NP ToNNa

VNIVIN ON 25 DORIN NN MNP OINDN DY DONN NPYA P2 DIVP 1901 D) DIINND DN NIPNN2
SV MON ,NMT 19N .TIHNN NPPOIND NNN D) OIDN XN IPHRD NPPOIND NNN DIDN 1N
MNIN MINDNT 0) DONN DN IPNN NPPVIND NNN MNPON NINX VINNN TIVN NPPVIND

JNANKR TMYT M) PRY

ii

9851

OIN9IP OYONMIVIN

NMPY 295 PN 19N DOV VOPN NN DIRNMP DO5 7772 DPVDIPNIVT-RD D»ND DVMIVIN
VYPN NN NIIPY NYY YOIP 29D VMIVIN ,NNT NNYIYY .D>ANN YODIAN D1V NN DYTINN 1172
YOI VYIVIN .PPTA NNX OYI NXIPI MN 93 Ty D5 ,MIND MIND 199D PN RY 191N DY
NN AN VOPN IYRD N D DAX DNNT .OOPN ATOD MDYN PN ONAY DIPNA YOI
SV NP PLIND VAN NTIPIN .ONOY MNIN 220 NPNY P NI DN D1 DANYNN
22990 NMYNN D) NNDNN ,MAYN DY 22OVIMPN MDD DY MOONDNA DONDN Nt ,NPONNS MY

Rl

STIND DPDY DAVINYD PNIDN DXPNN DN VIV YDVPIVN YTV DN DNNP DVMIVIN Tya
S¥ VOPN PONND NY) SV HH PONN DYD UNIN NYIN DY WA 1NNV PYON NINRE .MIIYND
LDINN DMIPNI AUND NP ASI NN NN NYNNN DONDN OAPNA 30D LYOPN VMVIND
220N YI9PY NN (MNP KDOD) VIPN MNP TONNA NPNITO NN T YRIN IUNRD ,OUnd

JOrn” 12D N8 KD N 19D M AN NYp

NYNMD MPrOINT

NN IPTMIVND .NNAPN MDY NN NNOY MOINN NPMND MPPOID YIDY DPNN NN NNTIAY]
N9 92PY P> NND DUNN NN T ,MNOYD DININ MPXPNY DND DINP DPVMVIND DDNPNN
DOTANN NN ION MPPOIND DY DMINNDD NN NPND OO X LYURIN MNAPO ON*2 NN

JNONN MNOM Y3

pONM w N9 A Y9P VIVIN DY JONDI MNYN MPPOINDN YIDY NN NINPA D8N DN
DNAY DOPTIRM DXIANNN G871 NN NINN 1OV NApNa p AN LA-1 w Y¥ ndapn N
DT AN OY Mbyn AR DT NYNN aw-a NP

No9aAPNNN 1PN, IS0 ,p >T DY NN W' N9NN Yy DYINDN DX IPNND NPPOVINDI e
a0-N MY w' N2V NPMIRD 1901 NN p SV MOYN .AMN NIRNP p 1TOA w NNIPA

VY NOAY MX9PN 2ONNX D100 NN p oV MOYN VOMNN TIYN NPPOINDI e

AYNNN Y TND NONPO ,INVNOR IRY 77T S IN»NIND YA IPNNN

NNV MON»NN 0NN OTIDY NN PR DN IPNNN 2D PANN Mt NN 92NN
DTN NN 29D YNANN OYTH IPNNHN NJINND ,NIY NN 19D DY) 10 DNNp DAIPnnd
DY NN DYYI DT NDNA PIIRNM IPNND DY MPTN 10 0D INTPRD DYN DY NPHIND
TN MNK YMN 29D [ANON)

STNONYNA NTIN H’ADIN NNHNN DY PIDVD NTIN N

DIN9IP DIVMIVIND NPNIND MPIVIND

PPN DYy NN

ANINN NOAPO MYWITN YV 'PON N owd
AWNNN PYTNI DYTNY J0DIN

V100 W)

INAWD OOV NIN — PIDVN VIDD YN
2024 v non T"aVNn PO

DINOIP DIVMIVIND NININD MPIVIND

1190 W

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Organization

	2 Preliminaries
	2.1 Permutations
	2.2 Nondeterministic Finite Automata
	2.3 Jumping Automata

	3 The Quantitative Semantics
	3.1 Introduction
	3.2 The Semantics
	3.2.1 The Absolute Distance Semantics
	3.2.2 The Reversal Semantics
	3.2.3 The Hamming Semantics

	3.3 Quantitative Decision Problems

	4 The Absolute Distance Semantics
	4.1 The Membership Problem for ABS
	4.2 Decidability of Boundedness Problems for ABS
	4.3 PSPACE-Hardness of boundedness for ABS

	5 The Reversal Semantics
	5.1 The Membership Problem for REV
	5.2 Decidability of Boundedness Problems for REV
	5.3 PSPACE-Hardness of Boundedness for REV

	6 The Hamming Semantics
	6.1 The Membership Problem for HAM
	6.2 Decidability of Boundedness Problems for HAM
	6.3 PSPACE-Hardness of Boundedness for HAM

	7 Interplay Between the Semantics
	8 Conclusion and open questions
	8.1 Conclusion
	8.2 An Open question

	Bibliography
	Hebrew Abstract

