
Quantitative Semantics on
Jumping Automata

Ishai Salgado

Quantitative Semantics on
Jumping Automata

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Ishai Salgado

Submitted to the Senate
of the Technion — Israel Institute of Technology

Sivan 5784 Haifa June 2024

This research was carried out under the supervision of Dr. Shaull Almagor, in the
Faculty of Computer Science.
The author of this thesis states that the research, including the collection, processing
and presentation of data, addressing and comparing to previous research, etc., was
done entirely in an honest way, as expected from scientific research that is conducted
according to the ethical standards of the academic world. Also, reporting the research
and its results in this thesis was done in an honest and complete manner, according to
the same standards.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Related Work . 5
1.2 Contribution and Organization . 5

2 Preliminaries 7
2.1 Permutations . 7
2.2 Nondeterministic Finite Automata . 7
2.3 Jumping Automata . 8

3 The Quantitative Semantics 9
3.1 Introduction . 9
3.2 The Semantics . 9

3.2.1 The Absolute Distance Semantics 9
3.2.2 The Reversal Semantics . 9
3.2.3 The Hamming Semantics . 10

3.3 Quantitative Decision Problems . 10

4 The Absolute Distance Semantics 13
4.1 The Membership Problem for ABS . 13
4.2 Decidability of Boundedness Problems for ABS 14
4.3 PSPACE-Hardness of boundedness for ABS 17

5 The Reversal Semantics 21
5.1 The Membership Problem for REV . 21
5.2 Decidability of Boundedness Problems for REV 21
5.3 PSPACE-Hardness of Boundedness for REV 24

6 The Hamming Semantics 27
6.1 The Membership Problem for HAM . 27
6.2 Decidability of Boundedness Problems for HAM 27

6.3 PSPACE-Hardness of Boundedness for HAM 28

7 Interplay Between the Semantics 31

8 Conclusion and open questions 35
8.1 Conclusion . 35
8.2 An Open question . 35

Hebrew Abstract i

List of Figures

1.1 The Jumping Finite Automaton A . 4

3.1 The Jumping Finite Automaton B . 11

4.1 A single transition in the construction of Lemma 4.2.2. 16

Abstract

Jumping automata are finite automata that read their input in a non-sequential manner,
by allowing a reading head to ”jump“ between positions of the input, consuming a
permutation of the input word. We argue that allowing the head to jump should incur
some cost. To this end, we propose three quantitative semantics for jumping automata,
whereby the jumps of the head in an accepting run define the cost of the run. The
three semantics correspond to different interpretations of jumps; the absolute distance
semantics counts the distance the head jumps, the reversal semantics counts the number
of times the head changes direction, and the Hamming semantics measures the number
of letter-swaps the run makes.

We define and study several problems regarding these semantics. The membership
problem determines given a jumping automaton whether a word w is bounded by some
given number k. We show that the membership problem is NP-complete under the
three semantics.

We also study the boundedness problem: given a jumping automaton, decide whether
its (quantitative) language is bounded by k. We establish the decidability and give lower
bounds for this problem under several variants.

Furthermore, several relations between the boundedness problems of the seman-
tics are established: if an automaton is bounded under the Hamming semantics, it is
also shown to be bounded under the reversal semantics. Similarly, absolute distance
boundedness implies Hamming boundedness. We give examples showing that no other
similar implications hold.

1

2

Chapter 1

Introduction

Traditional automata read their input sequentially as is the case for most state-based
computational models. In contrast, a Jumping Finite Automaton (introduced in [MZ12])
may read its input in a non-sequential manner, jumping from letter to letter, as long as
every letter is read exactly once. A jumping automaton is relevant in cases where the
order of the input does not matter. One such example is when the input represents avail-
able resources, and we only wish to reason about their quantity. From a more language-
theoretic perspective, this amounts to looking at the commutative closure of the lan-
guages, a.k.a. their Parikh image. Several works have studied the algorithmic properties
and expressive power of these automata [FPS15, FS17, Vor18, FHY21, LPS14].

In [MZ12], the model of JFA (jumping finite automaton) and its motivation are
presented. Various closure properties of JFA languages are studied, e.g. JFA languages
are shown to be closed under complement, intersection, union, permutation and shuffle.
[FS17] further studies the JFA model, introducing a variant of regular-like expressions,
called alphabetical shuffle expressions that characterize JFA languages. Using these
expressions it is proved that JFA are closed under iterated shuffle. Moreover, a number
of complexity problems are studied, e.g. the membership problem for JFAs is shown
to be NP-hard.

While JFAs are an attractive and simple model, they present a shortcoming when
thought of as a model for systems, namely that the abstraction of the order may be
too coarse. More precisely, the movement of the head can be thought of as a physical
process of accessing the input storage of the JFA. Then, for some cases the movement
should be cheaper than in others, e.g. when the head moves sequentially. The ability
to jump around is physically more difficult so it should not come “for free”.

In our work we present three quantitative semantics which attempt to quantify the
cost of jumping. For our purposes we treat a JFA as a function from words to costs,
capturing how expensive it is to accept a given word with respect to the head jumps.
We wish to explore the properties of such semantics, their differences and other traits.

We briefly present the three different semantics: Consider a JFA A and a word w,
and let ρ be an accepting run of A on w. The run ρ in our case specifies the sequence

3

of states and indices visited in w. We first define the cost of individual runs.

1. In the Hamming (AHAM) semantics, we look at the word w′ induced by ρ, i.e,
the word obtained when reading w in the order ρ reads it. The cost of ρ is the
number of letters where w′ differs from w.

2. In the Absolute Distance (AABS) semantics the cost of ρ is the sum of the lengths
of jumps it makes.

3. In the Reversal (AREV) semantics the cost of ρ is the number of times the head
“turns” while reading w (i.e. it changes from moving left to right to moving right
to left or vice versa).

We then define the cost of the word w according to each semantics (which we denote
by ASEM(w)) where SEM ∈ {HAM,ABS,REV}, by taking the run that minimizes
the cost.

Thus, we lift JFAs from a Boolean automata model to the rich setting of quantitative
models [DKV09]. Unlike other quantitative automata, however, the semantics in this
setting arise naturally from the model, without an external domain. Moreover, the
definitions are naturally motivated by different types of memory access, as we now
demonstrate. First, consider a system whose memory is laid out in an array (i.e., a
tape), with a reading head that can move along the tape. Moving the head requires
some energy, and therefore the total energy spent reading the input corresponds to
the ABS semantics. Next, consider a system whose memory is a spinning disk (or
a sliding tape), so that the head stays in place and the movement is of the memory
medium. Then, it is cheap to continue spinning in the same direction, and the main
cost is in changing the arm direction. Then, the REV semantics best captures the
cost. Finally, consider a system that reads its input sequentially, but is allowed to edit
its input by replacing one letter with another, such that at the end the obtained word
is a permutation of the original word. This is akin to edit-distance automata [Moh03]
under a restriction of maintaining the amount of resources. Then, the minimal edits
required correspond to the HAM semantics.

q0 q1

a

b

Figure 1.1: The Jumping Finite Automaton A

Example 1.0.1. In order to illustrate the differences between the semantics defined
above, consider the JFA A, depicted in Figure 1.1. A accepts every word where the
number of instances of a is equal to the number of instances of b, as every such word

4

has a permutation in (ab)∗. But the word w = a3b3 has different costs depending on
the semantincs used:

• In the Hamming semantics, AHAM(w) = 2 as there is an accepting run where the
only letters changed are the letters in indices 2 and 5. It is not hard to see that
there is no better run.

• In the Absolute Distance semantics, AABS(w) = 8. An optimal order of indices
to be read is 1,4,2,5,3,6, which has three jumps of cost two (1 to 4, 2 to 5 and 3
to 6. In Chapter 4, the cost of a jump is defined to be one less than the distance
jumped over) and two jumps of cost 1 (4 to 2 and 5 to 3).

• In the Reversal semantics, AREV(w) = 4 by the same sequence of indices above,
as the head performs four “turns”, two from right to left (at indices 4 and 5) and
two from left to right (at indices 2 and 3).

1.1 Related Work

Jumping Automata were introduced in [MZ12]. We remark that [MZ12] contains some
erroneous proofs (e.g., closure under intersection and complement, also pointed in
[FS17]). The works in [FPS15, FS17] establish several expressiveness results on jump-
ing automata, as well as some complexity results. In [Vor18] many additional closure
properties are established. An extension of jumping automata with a two-way tape
was studied in [FHY21], and jumping automata over infinite words were studied by the
first author in [AY23].

When viewed as the commutative image of a language, jumping automata are closely
related to Parikh Automata [KR03, CFM11, CFM12], which read their input and accept
if a certain Parikh image relating to the run belongs to a given semilinear set (indeed, we
utilize the Parikh Automata in our proofs). Another related model is that of symmetric
transducers - automata equipped with outputs, such that permutations in the input
correspond to permutations in the output. These were studied in [Alm20] in a jumping
flavour, and in [NA21] in a quantitative k-window flavour.

More broadly, quantitative semantics have received much attention in the past
two decades, with many motivations and different flavors of technicalities. For more
information, the reader should refer to [Bok21, DKV09] and the references therein.

1.2 Contribution and Organization

Our contribution consists of the introduction of the three jumping semantics, and the
study of decision problems pertaining to them (defined in Chapter 3). Our main focus
is the boundedness problem: given a JFA A, decide whether the function described
by it under each of the semantics is bounded by some constant k. We establish the
decidability for all the semantics, and consider the complexity of some fragments.

5

This work is organized as follows: the preliminaries and definitions are given in
Chapter 2 and Chapter 3. Then, each of Chapters 4 to 6 studies one of the semantics,
and follows the same structure: we initially establish that the membership problem for
the semantics is NP-complete. Then we characterize the set of words whose cost is
at most k using a construction of an NFA. These constructions differ according to the
semantics, and involve some nice tricks with automata, but are technically not hard to
understand. We note that these constructions are preceded by crucial observations re-
garding the semantics, which allow us to establish their correctness. Next, in Chapter 7
we give a complete picture of the interplay between the different semantics (using some
of the results established beforehand). Finally, in Chapter 8 we discuss some exciting
open problems.

6

Chapter 2

Preliminaries

Consider a finite alphabet Σ. For every n ∈ {1, . . . , n} we denote by Σn the set of
words of length n over Σ. For w ∈ Σn we denote its letters by w = w1 · · ·wn, and its
length by |w| = n. Σ∗ is the language of all words over Σ of any length.

2.1 Permutations

Given n ∈ N, the permutation group Sn is the set of bijections (permutations) from
{1, ..., n} to itself. The identity permutation is denoted by id and is defined by id(i) = i

for every i ∈ {1, ..., n}.
Sn forms a group with the function-composition operation. Given a word w =

w1 · · ·wn ∈ Σn and a permutation π ∈ Sn, we define π(w) = (wπ(1), ..., wπ(n)).
We say that a word y is a permutation of x, and we write x ∼ y if and only if there

exists a permutation π ∈ S|x| such that π(x) = y.

2.2 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple A = ⟨Σ, Q, δ,Q0, F ⟩, where Σ
is a finite alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a nondeterministic
transition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting
states.

For a word w = w1w2 · · ·wn ∈ Σ∗, we define the run of A on w to be a sequence
ρ = q0, q1, . . . , qn where q0 ∈ Q0 and qi+1 ∈ δ(qi, wi+1) for every 0 ≤ i < |w|. We say
that ρ is accepting if qn ∈ F . A word w is accepted by A if there exists an accepting
run of A on w. The language of A, denoted by L(A), is the set of words accepted by
A.

An NFA A is universal if L(A) = Σ∗. The universality problem for NFAs is the
question of whether A is universal. This problem is well known to be PSPACE-complete
[MS72].

7

2.3 Jumping Automata

Consider an NFA A. We see A as a jumping finite automaton (JFA) by letting it ”jump”
over letters. Equivalently, it can be seen as an NFA that reads a (nondeterministically
chosen) permutation of the input word.

Formally, consider an NFA A. A word w ∈ Σ∗ is accepted by the jumping finite
automaton (JFA) A if there is a permutation π such that π(w) is accepted by A as an
NFA. The jumping language of A is defined, in a similar way to NFAs, to be all the
words accepted by A. Equivalently, it is:

J(A) = {w ∈ Σ∗ | ∃u ∈ Σ∗.w ∼ u ∧ u ∈ L(A)},

Since our aim is to reason about the manner with which the head of a JFA jumps,
we introduce a notion to track the head along a run. Consider a word w of length n

and an NFA A. A jump sequence is a vector a = (a0 a1 a2 . . . an an+1) where a0 = 0,
an+1 = n+ 1 and (a1 a2 . . . an) ∈ Sn. We denote by Jn the set of all jump sequences
of size n+ 2.

Intuitively, a jump sequence a = (a0 a1 a2 . . . an an+1) represents the order in
which a JFA visits a given word of length n. First it visits the letter at index a1,
then the letter at index a2 and so on. To capture this, we define wa = wa1wa2 · · ·wan .
Observe that jump sequences enforce that the head starts at position 0 and ends at
position n + 1, which can be thought as left and right markers, as is common in e.g.,
two-way automata.

An alternative view of jumping automata is via Parikh Automata (PA) [CFM12],
[KR03]. The standard definition of PA is an automaton whose acceptance condition
includes a semilinear set over the transitions. To simplify things, and to avoid defining
unnecessary concepts (e.g., semilinear sets), for our purposes, a PA is a pair (A, C)
where A is an NFA over alphabet Σ, and C is a JFA over Σ. Then, the PA (A, C)
accepts a word w if w ∈ L(A)

⋂
J(C). Note that when L(A) = Σ∗, then the PA

coincides with J(C). Our usage of PA is to obtain the decidability of certain problems.
Specifically, from [KR03] we have that emptiness of PA is decidable.

8

Chapter 3

The Quantitative Semantics

3.1 Introduction

In this chapter we present and demonstrate the three quantitative semantics for JFAs.
We then define the relevant decision problems. For the remainder of the chapter fix a
JFA A = ⟨Σ, Q, δ,Q0, F ⟩.

3.2 The Semantics

3.2.1 The Absolute Distance Semantics

In the absolute distance semantics, the cost of a run (given as a jump sequence) is the
sum of the sizes of the jump made by the head. Since we want to think of a sequential
run as a run with 0 jumps, we measure a jump over k cells as distance k− 1 (either to
the left or to the right). This is captured as follows.

For k ∈ Z\ {0} we define ∥k∥ = |k|− 1. Consider a word w ∈ Σ∗ with length n, and
let a = (a0, a1, a2, . . . , an, an+1) be a jump sequence, then we lift the notation above
and write ∥a∥ = Σn+1

i=1 ∥ai − ai−1∥.

Definition 3.2.1. For a word w ∈ Σ∗ with length n we define

AABS(w) = min{∥a∥ | a is a jump sequence, and wa ∈ L(A)}

If the set above is empty, we define AABS(w) = ∞.

3.2.2 The Reversal Semantics

In the reversal semantics, the cost of a run is the number of times the head changes
direction in the corresponding jump sequence. Consider a word w ∈ Σ∗ with length n,
and let a = (a0 a1 a2 . . . an an+1) be a jump sequence, we define

#REV(a) = |{i ∈ {1, . . . , n} | (ai > ai−1 ∧ ai > ai+1) ∨ (ai < ai−1 ∧ ai < ai+1)}|

9

Definition 3.2.2. For a word w ∈ Σ∗ with length n we define

AREV(w) = min {#REV(a) | a is a jump sequence, and wa ∈ L(A)}

If the set above is empty, we define AREV(w) = ∞.

3.2.3 The Hamming Semantics

In the Hamming semantics, the cost of a word is the minimal number of coordinates that
need to be changed in order for the obtained word to be accepted by A (sequentially,
as an NFA), so that the changed word is a permutation of w.

Definition 3.2.3. The Hamming distance between words of the same length x, y ∈ Σn

such that x ∼ y is:
dHAM(x, y) = |{i | xi ̸= yi}|

Definition 3.2.4. For a word w ∈ Σ∗ we define:

AHAM(w) = min{dH(w,w′) | w′ ∈ L(A), w′ ∼ w}

If the set above is empty, we define AHAM(w) = ∞.

Remark. Note that the definitions of the three semantics are independent of the NFA,
and only refer to its language. We can therefore refer to the cost of a word in a language
according to each semantics, rather than the cost of a word in a concrete automaton.

3.3 Quantitative Decision Problems

Let SEM ∈ {HAM,ABS,REV}.
We say that ASEM is k-bounded if for all w ∈ J(A), ASEM(w) ≤ k. We define a

similar term for the universal variant: ASEM is universally k-bounded if for all w ∈ Σ∗,
ASEM(w) ≤ k. Additionally, we say that ASEM is bounded (or universally bounded)
if there exists a k ∈ N such that ASEM(w) ≤ k for all w ∈ J(A) (or all w ∈ Σ∗,
respectively).

In the remainder of the work we focus on quantitative variants of the standard
Boolean decision problems pertaining to the jump semantics. Specifically, we consider
the following problems for each semantics.

1. Membership: Given a JFA A, k ∈ N and a word w, decide whether ASEM(w) ≤ k.

2. k-Boundedness (fixed k): Given a JFA A, decide whether ∀w ∈ J(A) ASEM(w) ≤
k.

3. Param-Boundedness: Given a JFA A and k ∈ N, decide whether ∀w ∈
J(A) ASEM(w) ≤ k.

10

We also pay special attention to the universal setting, in which case we refer to the
last two problems as Univ-k-Boundedness and Univ-Param-Boundedness. For
example, in Univ-Param-Boundedness we are given a JFA A and k ∈ N and the
problem is to decide whether ASEM(w) ≤ k for all words w ∈ Σ∗.

The boundedness problems can be thought of as quantitative variants of Boolean
universality (i.e., is the language equal to Σ∗). Observe that the problems above are
not fully specified, as the encoding of k (binary or unary) when it is part of the input
may affect the complexity. We remark on this when it is relevant.

Note that Boolean emptiness problem variants are absent from the list above. In-
deed, a natural quantitative variant would be: is there a word w such that ASEM(w) ≤
k. This, however, is identical to Boolean emptiness, since if there exists a word w such
that ASEM(w) ≤ k then there exists a word w′ such that ASEM(w′) = 0. Conversely,
if there does not exist such w, then A is empty when seen as an NFA. We therefore
do not consider this problem. Another problem to consider is boundedness when k is
existentially quantified. We elaborate on this problem in Chapter 8.

We observe that there is a simple reduction from k-Boundedness to Param-
Boundedness: given a JFA A, output (A, k). We will use this reduction throughout
our work.

Example 3.3.1. As an example observe again the JFA A which appears in Figure 1.1.
We have shown that A is not 1-bounded regarding the three measures. Moreover, the
set of words {anbn | n ∈ N} shows that A isn’t k-bounded for any k and for any of the
three measures.

q0 q1

a

b

b

Figure 3.1: The Jumping Finite Automaton B

Example 3.3.2. Consider now the NFA B from Figure 3.1 which accepts the language
a∗b∗. When seen as a JFA, B accepts all the words in {a, b}∗, since every such word
can be written as a sequence of a’s followed by a sequence of b’s. Observe that in the
REV semantics, for every word w we have BREV(w) ≤ 2, since at the worst case B
reads all the a’s in one left to right pass, then all of the b’s in one right to left pass, and
then jumps to the right end marker, and thus it has two turning points. In particular,
BREV is bounded. However, in the ABS and HAM semantics, the cost can become
unbounded as seen by words of the form bnan. Indeed, in the ABS semantics the head
must first jump over all the bn, incurring a high cost, and for the HAM semantics, all
the letters must be changed, also incurring a high cost.

11

12

Chapter 4

The Absolute Distance Semantics

4.1 The Membership Problem for ABS

The first semantics we investigate is the Absolute Distance semantics, and we start by
showing that its membership problem is NP-complete. This is based on bounding the
distance with which a word can be accepted.

Lemma 4.1.1. Let A be an NFA, and w ∈ J(A) with length n. Then AABS(w) ≤ n2.

Proof. Since w ∈ J(A), there exists a jump sequence a = (a0 a1 . . . an an+1) such that
wa ∈ L(A) and AABS(w) = ∥a∥. Observe that |ai − ai−1| ≤ n for all i ∈ {1, . . . , n+ 1},
since there is no jump from 0 to n + 1 (since the head starts at a0 = 0 and ends at
an = n+ 1 and must go through all the indices between). The following concludes the
proof:

∥a∥ =
n+1∑
i=1

∥ai − ai−1∥ =
n+1∑
i=1

(|ai − ai−1|) − 1 ≤
n+1∑
i=1

(n− 1) = (n+ 1)(n− 1) < n2

We can now prove the complexity bound for the membership problem in the Abso-
lute Distance semantics, as follows:

Theorem 4.1. The problem of deciding, given a JFA A, w ∈ Σ∗ and k ∈ N, whether
AABS(w) ≤ k, is NP-complete.

Proof. First we establish membership in NP. If k > n2 we can set k = n2 as per Lemma
4.1.1. So we can assume k ≤ n2. Then, it is sufficient to nondeterministically guess a
jump sequence a ∈ Jn and to check that wa ∈ L(A) and that ∥a∥ ≤ k. Both conditions
are easily checked in polynomial time, since k is polynomially bounded.

Hardness in NP follows by reduction from (Boolean) membership in JFA: it is
shown in [FS17] that deciding whether w ∈ J(A) is NP-hard. We reduce this problem
to ours by outputting, given A and w, the same A and w with the bound k = n2. The
reduction’s correctness follows from the fact that if w ∈ J(A) then by Lemma 4.1.1,
AABS(w) ≤ n2, and if w /∈ J(A) then AABS(w) = ∞ > n2. ■

13

4.2 Decidability of Boundedness Problems for ABS

We now turn our attention to the boundedness problems. Consider a JFA A and k ∈ N.
Intuitively, our approach is to construct and NFA B that simulates, while reading a
word w ∈ Σ∗, every jump sequence of A on w whose absolute distance is at most k.
The crux of the proof is to show that we can indeed bound the size of B as a function
of k. At a glance, the main idea here is to claim that since the absolute distance is
bounded by k, then A cannot make large jumps, nor many small jumps. Then, if we
track a sequential head going from left to right, then the jumping head must always be
within a bounded distance from it. We now turn to the formal arguments. Fix a JFA
A = ⟨Σ, Q, δ,Q0, F ⟩.

In order to understand the next lemma, imagine A’s jumping head while taking the
jth step in a run on w according to a jump sequence a = (a0 a1 a2 . . . an an+1). Thus
the jumping head currently points to the letter at index aj . Concurrently, imagine a
”sequential” head, which points to the jth letter in w, which is the letter that would
be read if we were reading w in a sequential manner. Note that these two heads start
and finish reading the word at the same indices a0 = 0 and an+1 = n+ 1. So, it stands
to reason that if at any step while reading w the distance between these two heads is
large, the cost of reading w according to a would also be large, as there would need
to be jumps that bridge the gaps between them. The following lemma formalizes this
idea:

Lemma 4.2.1. Let a = (a0 a1 a2 . . . an an+1) be a jump sequence. For every 1 ≤
j ≤ n it holds that ∥a∥ ≥ |aj − j|.

Proof. Let 1 ≤ j ≤ n+ 1. First, assume that aj ≥ j. We’ll look at the sum ∑j
i=1 ∥ai −

ai−1∥ ≤ ∥a∥. From the definition of ∥·∥ we have ∑j
i=1 ∥ai −ai−1∥ =

∑j
i=1 |ai −ai−1|−j,

and we conclude that in this case ∥a∥ ≥ |aj − j| by the following:

j∑
i=1

|ai − ai−1| − j ≥
triangle

inequality

|
j∑

i=1
ai − ai−1| − j =

telescopic
sum

|aj − a0| − j = aj − j = |aj − j|

Now assume that aj < j. The proof in this case is similar but instead of looking
at the sum ∑j

i=1 ∥ai − ai−1∥, we look at the sum ∑n+1
i=j+1 ∥ai − ai−1∥ ≤ ∥a∥: From the

definition of ∥ · ∥, ∑n+1
i=j+1 ∥ai −ai−1∥ =

∑n+1
i=j+1 |ai −ai−1| − (n+ 1 − (j+ 1) + 1). Then,

n+1∑
i=j+1

|ai − ai−1| − (n+ 1 − (j + 1) + 1) ≥
triangle

inequality

|
n+1∑

i=j+1
ai − ai−1| − (n+ 1 − (j + 1) + 1)

=
telescopic

sum
|an+1 − aj | − (n+ 1 − j) = |n+ 1 − aj | − (n+ 1 − j) = j − aj = |j − aj |

14

From Lemma 4.2.1 we get that in order for a word w to attain a small cost, it
must be accepted with a jump sequence that stays close to the sequential head. More
precisely:

Corollary 4.2. Let k ∈ N and consider a word w such that AABS(w) ≤ k, then there
exists a jumping sequence a ∈ Jn such that wa ∈ L(A) and for all 1 ≤ j ≤ n we have
|aj − j| ≤ k.

We now turn to the construction of an NFA that recognizes the words whose cost
is at most k.

Lemma 4.2.2. Let k ∈ N. We can effectively construct an NFA B such that L(B) =
{w ∈ Σ∗ | AABS(w) ≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: it remembers in its states a window
of size 2k + 1 centered around the current letter (recall that as an NFA, B reads its
input sequentially). The window is constructed by nondeterministically guessing (and
then verifying) the next k letters, and remembering the last k letters.

B then nondeterministically simulates a jumping sequence of A on the given word,
with the property that the jumping head stays within distance k from the sequential
head. This is done by marking for each letter in the window whether it has already
been read in the jumping sequence, and nondeterministically guessing the next letter to
read, while keeping track of the current jumping head location, as well as the total cost
incurred so far. After reading a letter, the window is shifted by one to the right. If at
any point the window is shifted so that a letter that has not been read by the jumping
head shifts out of the 2k+ 1 scope, the run rejects. The correctness of the construction
follows from Corollary 4.2. We now turn to the formal details. Let A = ⟨Σ, Q, δ,Q0.F ⟩.
We define B = ⟨Σ, Q′, δ′, Q′

0, F
′⟩ as follows.

The state space of B is Q′ = Q× (Σ × {?,✓})−k,...,k × {−k, . . . , k} × {0, . . . , k}. We
denote a state of B as (q, f, j, c) where q ∈ Q is a state of A, f : {−k, . . . , k} → Σ×{?,✓}
represents a window of size 2k + 1 around the sequential head (the sequential head is
always at index 0), where ✓ marks letters that have already been read by A (and ?
marks the others), j represents the index of the head of A relative to the sequential
head, and c represents the cost incurred thus far in the run. We refer to the components
of f as f(j) = (f(j)1, f(j)2) with f(j)1 ∈ Σ and f(j)2 ∈ {?,✓}.

The initial states of B are Q′
0 = {(q, f, j, j − 1) | q ∈ Q0 ∧ j > 0 ∧ (f(i)2 = ✓ ⇐⇒

i ≤ 0)}. That is, all states where the state of A is initial, the location of the jumping
head is some j > 0 incurring a cost of j − 1 (i.e, the initial jump A makes), and the
window is guessed so that everything left of the first letter is marked as already-read
(to simulate the fact that A cannot jump to the left of the first letter).

The transitions of B are defined as follows. Consider a state (q, f, j, c) and letter
σ ∈ Σ, then (q′, f ′, j′, c′) ∈ δ′((q, f, j, c), σ) if and only if the following hold:

15

• f(1)1 = σ. That is, we verify that the next letter in the guessed window is indeed
correct.

• f(−k)2 = ✓. That is, the leftmost cell has been read. Otherwise by Corollary 4.2
the cost of continuing the run must be greater than k.

• f(j)2 ̸= ✓ and f ′(j−1) = ✓ (if j > −k). That is, the current letter has not been
previously read, and will be marked as read from now on (note that the index j
before the transition corresponds to index j − 1 after).

• q′ = δ(q, f(j)1), i.e. the state of A is updated according to the current letter.

• c′ = c+ |j′ + 1 − j| − 1, since j′ represents the index in the shifted window, so in
the ”pre-shifted” tape this is actually index j′ +1. We demonstrate this in Figure
4.1. Also, c′ < k by the definition of Q.

• f ′(i) = f(i + 1) for i < k. That is, the window is shifted and the index f ′(k)
is nondeterministically guessed (note that the guess could potentially be ✓, but
such a guess cannot lead to an accepting state).

α✓
-4

β?
-3

γ✓
-2

ϵ?
-1

µ✓
0

η?
1

ξ?
2

χ✓
3

θ?
4

xx

β✓
-4

γ✓
-3

ϵ?
-2

µ✓
-1

η?
0

ξ?
1

χ✓
2

θ?
3

ψ?
4

x x

⇓

Figure 4.1: A single transition in the construction of Lemma 4.2.2.

In Figure 4.1, The semi-transparent arrow signifies the sequential head, while the
opaque arrow is the ”imaginary” jumping head. Here, the head jumps from −3 to 2,
incurring a cost of 4, but in the indexing after the transition ξ is at index 1, thus the
expression given for c′ in the construction. Note that the letter being read must be µ,
and that α must be checked, otherwise the run has failed.

Finally, the accepting states of B are F ′ = {(q, f, 1, c) | q ∈ F ∧ c ≤ k ∧ f(j)2 =
? for all j > 0}. That is, the state of A is accepting, the overall cost is at most k, the
location of the jumping head matches the sequential head (intuitively, location n+ 1),
and no letter beyond the end of the tape has been used.

16

It is easy to verify that B indeed guesses a jump sequence and a corresponding run
of A on the given word, provided that the jumping head stays within distance k of
the sequential head. By Corollary 4.2, this restriction is complete, in the sense that if
AABS(w) ≤ k then there is a suitable jump sequence under this restriction with which
w is accepted. ■

We can now easily conclude the decidability of the boundedness problems for the
ABS semantics. The proof makes use of the decidability of emptiness for Parikh Au-
tomata [KR03].

Theorem 4.3. The following problems are decidable for the ABS semantics: k-Boundedness,
Param-Boundedness, Univ-k-Boundedness and Univ-Param-Boundedness.

Proof. Consider a JFA A and k ∈ N (k is either fixed or given as input, which does
not affect decidability), and let B be the NFA constructed as per Lemma 4.2.2. In
order to decide Univ-k-Boundedness and Univ-Param-Boundedness, observe that
AABS(w) ≤ k for every word w ∈ Σ∗ if and only if L(B) = Σ∗. Since the latter is
decidable for NFA, we have decidability.

Similarly, in order to decide k-Boundedness and Param-Boundedness, observe
that AABS(w) ≤ k for every word w ∈ J(A) if and only if J(A) ⊆ L(B). We can
decide whether the latter holds by constructing the PA (B,A) where B is an NFA for
the complement of L(B), and checking emptiness. Since emptiness for PA is decidable
[KR03], we conclude decidability. ■

With further scrutiny, we see that the size of B constructed as per Lemma 4.2.2 is
polynomial in the size of A and single exponential in k. Thus, Univ-k-Boundedness
is in fact decidable in PSPACE.

4.3 PSPACE-Hardness of boundedness for ABS

In the following, we complement the decidability result of Theorem 4.3 by showing that
already Univ-k-Boundedness is PSPACE-hard, for every k ∈ N.

We first observe that the absolute distance of every word is even. In fact, this true
for every jump sequence.

Lemma 4.3.1. Consider a jump sequence a = (a0 a1 . . . an an+1), then ∥a∥ is even.

Proof. Observe that the parity of |ai − ai−1| is the same as the parity of ai − ai−1. It
follows that the parity of ∥a∥ =

∑n+1
i=1 ∥ai − ai1∥ =

∑n+1
i=1 |ai − ai−1| − 1 is the same as

that of:

n+1∑
i=1

|ai − ai−1| − 1 = (
n+1∑
i=1

a1 − ai−1) − (n+ 1) = n+ 1 − (n+ 1) = 0

and is therefore even (the penultimate equality is due to telescopic sum). ■

17

We are now ready to prove the hardness of Univ-k-Boundedness. Observe that
for a word w ∈ Σ∗ we have that AABS(w) = 0 if and only if w ∈ L(A) (indeed, a cost of
0 implies that that an accepting jumping sequence is the sequential run 0, 1, . . . , |w|+1.
In particular, we have that AABS is 0-bounded if and only if L(A) = Σ∗. Since the
universality problem for NFAs is PSPACE-complete, this readily proves that Univ-0-
Boundedness is PSPACE-hard. Note, however, that this does not imply that Univ-k-
Boundedness is also PSPACE-hard for other values of k, and that the same argument
fails for k > 0. We therefore need a slightly more elaborate reduction.

Lemma 4.3.2. For ABS the Univ-k-Boundedness and k-Boundedness are PSPACE-
hard for every k ∈ N.

Proof. In order for the reduction to work both for Univ-k-Boundedness and k-
Boundedness, we start with an initial transformation of the given NFA A to an NFA
A′ as follows. Given A, we introduce a fresh symbol $ to the alphabet, and modify it
so that reading $ from every state can either stay at the same state, or transition to a
new accepting state q$. From q$ no letters can be read. A′ then satisfies the following
property: if L(A) = Σ∗ then L(A′) = (Σ

⋃
{$})∗, and if L(A) ̸= Σ∗ then there exists a

word x /∈ L(A′) such that x ∈ J(A′). Indeed, for every (non-empty) word x /∈ L(A) we
have that $x /∈ L(A′) but x$ ∈ L(A′). We henceforth identify A with A′, and use this
property in the proof.

By Lemma 4.3.1, we can assume without loss of generality that k is even. Indeed,
if there exists m ∈ N such that AABS(w) ≤ 2m+ 1 for every w ∈ Σ∗, then by Lemma
4.3.1, we also have AABS(w) ≤ 2m. Therefore, we can assume k = 2m for some m ∈ N.

We reduce the universality problem for NFAs to the Univ-2m-Boundedness prob-
lem. Consider an NFA A = ⟨Q,Σ, δ,Q0, F ⟩. We first check whether ϵ ∈ L(A) (i.e, we
check whether Q0 ∩ F ̸= ∅). If ϵ /∈ L(A), we output some fixed unbounded automaton
B (e.g., as in Example 3.3.1). Observe that since ϵ /∈ L(A) then A is not univer-
sal, preserving the reduction correctness in this case. We assume from now on that
ϵ ∈ L(A).

Now let ♡ /∈ Σ be a fresh symbol. Intuitively, we obtain from A an NFA B over the
alphabet Σ ∪ {♡} such that w ∈ L(B) if and only if the following hold:

1. Either w does not contain m occurrences of ♡, or

2. w contains exactly m occurrences of ♡, but does not start with ♡, and w|Σ ∈ L(A)
(where w|Σ is obtained from w by removing all occurrences of ♡), or

3. w = ♡m (think of this as an exception to Condition 2 where w|Σ = ϵ).

Constructing B from A is relatively straightforward by taking m+ 1 copies of A to
track the number of ♡s in the word. In particular, the reduction is in polynomial time.

We claim that L(A) = Σ∗ if and only if BABS is 2m-bounded. For the first direction,
assume L(A) = Σ∗. Let w ∈ (Σ ∪ {♡})∗.

18

1. If w ∈ L(B) then BABS(w) = 0 ≤ 2m.

2. If w /∈ L(B) then w starts with ♡ but has exactly m occurrences of ♡ and at
least one letter which is not ♡. Let j be the first index which does not contain
♡. Observe that j ≤ m+ 1 since there are at most m consecutive ♡s at the start
of w. The following jump sequence a causes B to accept wa:

a = (0 j 1 2 . . . j − 1 j + 1 j + 2 . . . |w| |w| + 1)

Indeed, wa does not start with ♡, has exactly m occurrences of ♡, and w|Σ ∈
L(A) = Σ∗, so Condition 2 holds. Finally, note that ∥a∥ ≤ 2m (since the only
non-zero jumps are 0 to j, j to 1, and j − 1 to j + 1).

For the converse, assume L(A) ̸= Σ∗. Let x /∈ L(A). Since ϵ ∈ L(A) by the
treatment of this case above, x ̸= ϵ. We also can assume by the identification of A with
A′ that x ∈ J(A). Now consider w = ♡mx. We claim that BABS(w) > 2m. Indeed, let
a be a jump sequence such that wa ∈ L(B) (if there isn’t a jump sequence like that,
then BABS(w) = ∞ and we are done). Then, a1 ≥ m+1, contributing a cost of at least
m to a. It can easily be seen by induction over m that in order for a to cover the entries
1, . . . ,m starting at position m+ 1 and ending at position m+ 2, it requires cost of at
least another m (moreover, if the ending position is greater than m+2, then the overall
cost is already greater than 2m). Then, however, in order for wa to be accepted by B,
it must hold that wa|Σ ̸= x, so a is not the identity starting from m + 1. It therefore
has an additional cost of at least 1. Thus, ∥a∥ > 2m. In particular, BABS(w) > 2m, so
B is not 2m-bounded. Note that w ∈ J(B), since x ∈ J(A). Thus, we are done both in
the universal and non-universal settings. ■

Lemma 4.3.2 shows hardness for fixed k, and in particular when k is part of the in-
put. Thus Univ-Param-Boundedness and Param-Boundedness are also PSPACE-
hard, and Univ-k-Boundedness is PSPACE-complete.

19

20

Chapter 5

The Reversal Semantics

5.1 The Membership Problem for REV

We now study the reversal semantics. Recall from Definition 3.2.2 that for a JFA A
and a word w, the cost AREV(w) is the minimal number of times the jumping head
changes ”direction” in a jump sequence for which w is accepted.

Consider a word w with |w| = n and a jump sequence a = (a0 a1 . . . an an+1).
We say that an index 1 ≤ i ≤ n is a turning index if ai > ai−1 and ai > ai+1 (i.e., a
right-to-left turn) or if ai < ai−1 and ai < ai+1 (i.e., a left-to-right turn). We denote
by Turn(a) the set of turning indices of a.

Example 5.1.1. For example, consider the jump sequence (
a0
0

a1
2

a2
3

a3
5

a4
7

a5
4

a6
1

a7
6

a8
8), then

Turn(a) = {4, 6}.

Note that the cost of w is then AREV(w) = min{Turn(a) | wa ∈ L(A)}. Viewed
in this manner, we have that AREV(w) ≤ |w|, and computing Turn(a) can be done in
polynomial time. The reader would recall that in order to prove Theorem 4.1 we used
the fact that k can be bounded in polynomial time in the size of w. Thus, identically
we have the following.

Theorem 5.1. The problem of deciding, given A and k, whether AREV(w) ≤ k is
NP-complete.

Remark. For every jump sequence a we have that |Turn(a)| is even, since the head
starts at position 0 and ends at n+ 1, where after an odd number of turning points the
direction is right-to-left, and hence cannot reach n+ 1.

5.2 Decidability of Boundedness Problems for REV

We begin by characterizing the words accepted using at most k reversals as a shuffle of
subwords and reversed-subwords, as follows.

21

Definition 5.2.1. Let x, y ∈ Σ∗ be words, we define their shuffle to be the set of words
obtained by interleaving parts of x and parts of y. Formally:

u� v = {x1 · y1 · x2 · y2 . . . xn · yn | ∀i xi, yi ∈ Σ∗ ∧ u = x1x2 . . . xn ∧ v = y1y2 . . . yn}

Example 5.2.2. If x = aab and y = cd then x�y contains the words aabcd, acabd,
caadb, among others (the colors reflect which word each subword originated from).
Note that the subwords may be empty, e.g., caadb, can be seen as starting with ϵ as a
subword of x.

It is easy to see that � is a associative operation, so it can be extended to any finite
number of words.

As we will soon see, intuitively, if AREV(w) ≤ k, then w can be decomposed to
a shuffle of at most k + 1 subwords of itself, where all the even ones are reversed
(representing the left-reading subwords). These subwords are the defined as follows.

Definition 5.2.3. Consider a word w ∈ Σ∗ and a jump sequence a ∈ J|w|. Write
Turn(a) = {i1, i2, . . . , il} where i1 < i2 < . . . < il and set i0 = 0 and il+1 = n + 1.
Then, for every 1 ≤ j ≤ l + 1, the j-th turning subword of w with regard to a is
sj = waij−1

waij−1+1 . . . waij
−1.

Example 5.2.4. If w = abcd and a = (
a0
0

a1
2

a2
4

a3
1

a4
3

a5
5) then Turn(a) = {2, 3}, wa =

bdac, s1 = b, s2 = d and s3 = ac. In the case of sequential reading (e.g., when
a = (0 1 2 3 4 5)), s1 = abcd is the only turning subword of w.

Lemma 5.2.5. Let k ∈ N. Consider an NFA A and a word w ∈ Σ∗. Then AREV(w) ≤
k iff there exist words s1, s2, . . . , sk+1 ∈ Σ∗ such that the following hold.

1. s1s2 . . . sk+1 ∈ L(A).

2. w ∈ s1 � s2
R
� s3 � s4

R
� . . .� sk+1 (where si

R is the reverse of si).

Proof. For the first direction, assume AREV(w) ≤ k, so there exists a jump sequence a
such that |Turn(a)| ≤ k and wa ∈ L(A). Let s1, s2, . . . , sl+1 be the turning subwords
of w with regard to a. If l + 1 < k + 1 we define sl+2, . . . , sk+1 to be ϵ. To avoid
cumbersome indexing, we assume l + 1 = k + 1 in the following.

It is easy to see that conditions 1 and 2 hold for s1, s2, . . . , sk+1. Indeed, by definition
we have s1s2 · · · sk+1 ∈ L(A), so condition 1 holds. For condition 2, observe that for
every 1 ≤ i ≤ k + 1, if i is odd, then si consists of an ascending sequence of letters,
and if i is even then si is a descending sequence. Since the si form a partition of the
letters of w, we can conclude that w ∈ s1 � s2

R
� s3 � s4

R
� . . .� sk+1 (by shuffling

the letters of these words to form exactly the sequence of indices 1, . . . , |w|).
For the converse, consider words s1, s2, . . . , sk+1 such that conditions 1 and 2 hold.

By condition 2, we see that the word s1s2 · · · sk+1 is a permutation of w, and moreover

22

- from the way w is obtained in s1 � s2
R
� s3 � s4

R
� . . . � sk+1 we can extract a

jump sequence a such that wa = s1s2 · · · sk+1 and such that the turning subwords of a
are exactly s1, s2

R, . . . , sk+1. Indeed, this follows from the same observation as above
- for odd i we have that si is an increasing sequence of indices, and for even i it is
decreasing. In particular, |Turn(a)| ≤ k, so AREV(w) ≤ k. ■

Using the characterization in Lemma 5.2.5, we can now construct a corresponding
NFA, by intuitively guessing the shuffle decomposition and running copies of A and its
reverse in parallel.

Lemma 5.2.6. Let k ∈ N and consider a JFA A. We can effectively construct an NFA
B such that L(B) = {w ∈ Σ∗ | AREV (w) ≤ k}.

Proof. The overall plan is to construct B so that it captures the condition in Lemma
5.2.5. Intuitively, B keeps track of k + 1 coordinates, each corresponding to a turning
subword (that are nondeterministically constructed). The odd coordinates simulate the
behavior of A, whereas the even ones simulate the reverse of A. In addition, B checks
(using its initial and accepting states) that the runs on the subwords can be correctly
concatenated. We proceed with the precise details.

Denote A = ⟨Σ, Q, δ,Q0, F ⟩. We construct B = ⟨Σ, Q′, δ′, Q′
0, F

′⟩ as follows. Q′ =
Qk+1, and the initial and final states are:

Q′
0 = {(q1, q2, . . . , qk+1) | q1 ∈ Q0 ∧ qi = qi+1 for all even i}

F ′ = {(q1, q2, . . . , qk+1) | qk+1 ∈ F ∧ qi = qi+1 for all odd i}

For the transiction function, we have that (q′
0, q

′
1, . . . , q

′
k) ∈ δ′((q0, q1, . . . , qk), σ) if

and only if there exists a single 1 ≤ j ≤ k + 1 such that q′
j ∈ δ(qj , σ) if j is odd, and

qj ∈ δ(q′
j , σ) if j is even (this represents the reverse words in Lemma 5.2.5). In addition,

for every i ̸= j, it holds that q′
i = qi.

We turn to show the correctness of B. Consider an accepting run ρ of B on some
word. Then ρ starts at state (q1, q2, . . . , qk+1) ∈ Q′

0 and ends at state (s1, s2, . . . , sk+1) ∈
F ′. By the definition of δ′, we can split ρ according to which component ”progresses”
in each transition, so that ρ can be written as a shuffle of run ρ1, . . . , ρk+1 where ρi

leads from qi to si in A if i is odd, and ρi leads from qi to si in the reverse of A if i is
even. The latter is equivalent to (ρi)R (i.e., the reverse run of ρi) leading from si to qi

in A if i is even.
We now observe that these runs can be concatenated as follows: Recall that q1 ∈ Q0

(by the definition of Q′
0). Then, ρ1 leads from q1 to s1 in A. By the definition of F we

have s1 = s2, and (ρ2)R leads from s2 to q2 in A. Therefore, ρ1(ρ2)R leads from q1 to
q2 in A. Continuing in the same fashion, we have q2 = q3, and ρ3 leading from q3 to
s3, and so on up to sk+1.

23

Thus, we have that ρ1(ρ2)Rρ3 · · · (ρk)Rρk+1 is an accepting run of A.
By identifying each accepting run ρi with the subword it induces (and reversing the

subwords for even i), we have that w ∈ L(B) if and only if there are words s1, . . . , sk+1

such that the two conditions in Lemma 5.2.5 are satisfied. ■

The proof of Lemma 9 shows that the size of B is polynomial in the size of A and
single-exponential in k, giving us PSPACE membership for Univ-k-Boundedness.
We can also conclude decidability for the rest of the boundedness problems using the
same techniques as in the ABS case.

Theorem 5.2. The following problems are decidable for the REV semantics: k-
Boundedness, Param-Boundedness, Univ-k-Boundedness and Univ-Param-
Boundedness.

5.3 PSPACE-Hardness of Boundedness for REV

Following a similar scheme to the Absolute Distance Semantics of Chapter 4, observe
that for a word w ∈ Σ∗ we have that AREV(w) = 0 if and only if w ∈ L(A), which
implies that Univ-0-Boundedness is PSPACE-hard. Yet again, the challenge is to
prove hardness of Univ-k-Boundedness for all values of k.

Theorem 5.3. For REV, Univ-k-Boundedness is PSPACE-complete for every k ∈
N.

Proof. By Remark 2 we can assume without loss of generality that k is even, and
we denote k = 2m. We reduce the universality problem for NFAs to the Univ-2m-
boundedness problem. Consider an NFA A = ⟨Σ, Q, δ,Q0, F ⟩, and let ♡,♠ /∈ Σ be
fresh symbols. We first check whether ϵ ∈ L(A). If ϵ /∈ L(A), then L(A) ̸= Σ∗ and we
output some fixed unbounded automaton B (e.g., as in Example 3.3.1).

Otherwise, we obtain from A an NFA B over the alphabet Σ
⋃

{♡,♠} such that
w ∈ L(B) if and only if the following hold:

1. Either w does not contain exactly m occurrences of ♡ and of ♠, or

2. w = (♡♠)mx where x ∈ L(A) (in particular x ∈ Σ∗).

Constructing B from A is straightforward as the union of two components: one that
accepts words that satisfy condition 1 (using 2m + 1 states) and one for condition 2,
which prepends to A a component with 2m states accepting (♡♠)m. In particular, the
reduction is in polynomial time.

We then have the following: if L(A) = Σ∗, then for every w ∈ (Σ
⋃

{♡,♠})∗, if w
satisfies condition 1, then BREV(w) = 0. Otherwise, w has exactly m occurrences of ♡
and of ♠. Denote the indices of ♡ by i1 < i2 < . . . < im and of ♠ by j1 < j2 < . . . < jm.

24

Also denote by t1 < t2 < . . . < tr the remaining indices of w. Then consider the jump
sequence

a = (0 i1 j1 i2 j2 . . . im jm t1 t2 . . . tr n+ 1)

We claim that wa ∈ L(B) by condition 2. Indeed, w starts with (♡♠)m, followed
by letters in Σ composing a word x. Since x ∈ L(A) = Σ∗, we have that condition
2 holds. In addition, observe that t1 < t2 < . . . < tr < n + 1, then Turn(a) ⊆
{i1, j1, . . . , im, jm, t0}, and in particular |Turn(a)| ≤ 2m+ 1.

Moreover, by Remark 2 we know that |Turn(a)| is even, so in fact |Turn(a)| ≤ 2m =
k. We conclude that BREV(w) ≤ k, so B is k-bounded.

Conversely, if L(A) ̸= Σ∗, take x /∈ L(A) such that x ̸= ϵ (which exists since we
checked above that ϵ ∈ L(A)). Consider the word w ∈ ♠m♡mx, then have w /∈ L(B).
We claim that BREV(w) > 2m. Indeed, if there exists a such that wa ∈ L(B), then
since w has exactly m occurrences of ♠ and of ♡, it must be accepted by condition
2. By the structure of w, the jump sequence a needs to permute ♠m♡m into (♡♠)m.
Intuitively, this means that the head must jump ”back and forth” for 2m steps. More
precisely, for every i ∈ {1, . . . , |w|} it holds that

ai ∈

{m+ 1, . . . , 2m}, i ≤ 2m is odd

{1, . . . ,m}, i ≤ 2m is even

{2m+ 1, . . . , |w|}, i > 2m

In particular, {1, . . . , 2m} ⊆ Turn(a). Observe that the remaining suffix of wa

starting at 2m+ 1 cannot be x, since x /∈ L(A), so a is not the identity starting from
2m+1. It therefore has an additional reversal cost of at least 1. Thus, |Turn(a)| > 2m.
In particular, BREV(w) > 2m, so B is not 2m-bounded, and we are done. ■

As in Section 4.3, it follows that k-Boundedness, Univ-Param-Boundedness
and Param-Boundedness are also PSPACE-hard.

25

26

Chapter 6

The Hamming Semantics

6.1 The Membership Problem for HAM

Recall from Definition 3.2.4 that for a JFA A and word w, the cost AHAM(w) is the
minimal Hamming distance between w and w′ where w′ ∼ w and w′ ∈ L(A).

We establish the complexity of the Membership problem for HAM.

Theorem 6.1. The problem of deciding, given A and k ∈ N, whether AHAM(w) ≤ k

is NP-complete.

Proof. By definition we have that AHAM(w) ≤ |w| for every word w ∈ J(A). Thus, in
order to decide whether AHAM(w) ≤ k we can nondeterministically guess a permutation
w′ ∼ w and verify that w′ ∈ L(A) and that dH(w,w′) ≤ k. Both conditions are
computable in polynomial time. Therefore, the problem is in NP.

Hardness follows (similarly to the proof of Theorem 4.1) by reduction from mem-
bership in JFA, noting that w ∈ J(A) if and only if AHAM(w) ≤ |w|. ■

6.2 Decidability of Boundedness Problems for HAM

Similarly to 4.2 Sections and 5.2, in order to establish the decidability of Univ-Param-Boundedness,
we start by constructing an NFA that accepts the words w for which AHAM(w) ≤ k.

Lemma 6.2.1. Let k ∈ N. We can effectively construct an NFA B with L(B) = {w ∈
Σ∗ | AHAM(w) ≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: while reading a word w sequentially,
it simulates the run of A, but allows A to intuitively ”swap” the current letter with a
(nondeterministically chosen) different one (e.g., the current letter may be a but the
run of A can be simulated on either a or b). Then, B keeps track of the swaps made
by counting for each letter a how many times it was swapped by another letter, and
how many times another letter was swapped to it. This is done by keeping a counter
ranging from −k to k, counting the difference between the number of occurrences of

27

each letter in the simulated word versus the actual word. We refer to this value as the
balance of the letter. B also keeps track of the total number of swaps. Then, a run is
accepting if at the end of the simulation, the total amount of swaps does not exceed k,
and if all the letters end up with 0 balance.

We now turn to the formal details. Recall that A = ⟨Σ, Q, δ,Q0, F ⟩. We define
B = ⟨Σ, Q′, δ′, Q′

0, F
′⟩. The state space of B is Q′ = Q× {−k, . . . , k}Σ × {0, . . . , k}. We

denote a state of B by (q, f, c) where q ∈ Q is the current state of A, f : Σ → {−k, . . . , k}
describes for each letter its balance and c ∈ {0, . . . , k} is the total number of swaps
thus far.

The initial states of B are Q′
0 = {(q, f, 0) | q ∈ Q0 ∧ f(σ) = 0 for all σ ∈ Σ}. That

is, we start in an initial state of A with balance and total cost of 0. The transition
function is defines as follows. Consider a state (q, f, c) and a letter σ ∈ Σ, then
(q′, f ′, c′) ∈ δ′((q, f, c), σ) if and only if either q′ ∈ δ(q, σ) and f ′ = f and c′ = c,
or there exists τ ∈ Σ, τ ̸= σ such that q′ ∈ δ(q, τ), c′ = c′ + 1, f ′(σ) = f(σ) − 1, and
f ′(τ) = f(τ) + 1. That is, in each transition we either read the current letter σ, or
swap for a letter τ and update the balances accordingly.

Finally, the accepting states of B are F ′ = {(q, f, c) | q ∈ F∧f(σ) = 0 for all σ ∈ Σ}.
In order to establish correctness, we observe that every run of B on a word w

induces a word w′ (with the nondeterministically guessed letters) such that along the
run the components f and c of the states track the swaps made between w and w′. In
particular, c keeps track of the number of total swaps, and ∑

σ∈Σ f(σ) = 0. Moreover,
for every word σ, the value f(σ) is exactly the number of times σ was read in w′ minus
the number of times σ was read in w.

Since B accepts a word if f ≡ 0 at the last state, it follows that B accepts if and
only if w′ ∼ w, and the run of A on w′ is accepting. Finally, since c is bounded by k

and is increased upon each swap, then limiting the image of f to values in {−k, . . . , k}
does not pose a restriction, as they cannot go beyond these bounds without c going
beyond the bound k as well. ■

An analogous proof to Theorem 4.3 gives us the following.

Theorem 6.2. The following problems are decidable for the HAM semantics: k-
boundedness, Univ-k-Boundedness and Univ-Param-Boundedness.

We note that the size of B constructed in Lemma 6.2.1 is polynomial in k and
single-exponential in |Σ|, and therefore when Σ is fixed and k is either fixed or given in
unary, both Univ-k-Boundedness and Univ-Param-Boundedness are in PSPACE.

6.3 PSPACE-Hardness of Boundedness for HAM

Following a similar scheme to the Absolute Distance and Reversal Semantics of Chap-
ters 4 and 5, observe that for a word w ∈ Σ∗ we have that AHAM(w) = 0 if and

28

only if w ∈ L(A), which implies that Univ-0-boundedness is PSPACE-hard. Also
it is not hard to prove using similar tricks that Univ-k-Boundedness is PSPACE-
hard. But in the HAM semantics case, since Univ-Param-Boundedness is already
PSPACE-complete, then Univ-k-Boundedness is somewhat redundant. We there-
fore make do with the trivial lower bound whereby we reduce universality of NFA to
Univ-0-Boundedness.

Theorem 6.3. For HAM, the Univ-Param-Boundedness problem is PSPACE-complete
for k coded in unary and fixed alphabet Σ.

29

30

Chapter 7

Interplay Between the Semantics

Having established some decidability results, we now turn our attention to the interplay
between the different semantics, in the context of boundedness. We show that for a
given JFA A, if AABS is bounded, then so is AHAM, and if AHAM is bounded, then so
is AREV. We complete the picture by showing that these are the only relationships -
we give examples for the remaining cases.

Theorem 7.1. Consider a JFA A. If AHAM is bounded, then AREV is bounded.

Proof. Consider a word w ∈ Σ∗, we show that if AHAM(w) ≤ k for some k ∈ N
then AREV(w) ≤ 3k. Assume AHAM(w) ≤ k, then there exists a jump sequence
a = (a0 . . . an+1) such that wa ∈ L(A) and wa differs from w in at most k indices.

We claim that we can assume without loss of generality that for every index i such
that wai = wi we have that ai = i (i.e., i is a fixed point). Intuitively - there is no
point swapping identical letters. Indeed, assume that this is not the case, and further
assume that a has the minimal number of fixed points among such jump sequences.
Thus, there exists some j for which aj ̸= j but waj = wj Let m be such that am = j,
and consider the jump sequence a′ = (a′

0, . . . , a
′
n+1) obtained from a by composing

the swap (aj am). Then, for every i /∈ {j,m} we have that a′
i = ai. In addition,

a′
j = am = j as well as a′

m = aj . In particular, a′ has more fixed points than a (exactly
those of a and j). However, we claim that wa = wa′ . Indeed, the only potentially
problematic coordinates are aj and am. For j we have waj = wj = wa′

j
and for m we

have wa′
m

= waj = wj = wam . This is a contradiction to a having a minimal number
of fixed points, so we conclude that no such coordinate aj ̸= j exists.

Next, observe that Turn(a) ⊆ {i | ai ̸= i ∨ ai+1 ̸= i + 1 ∨ ai−1 ̸= i − 1}. Indeed,
if ai−1 = i − 1, ai = i and ai+1 = i + 1 then clearly i is not a turning index. By the
property established above, we have that wai = wi, if and only if ai = i. It follows that
Turn(a) ⊆ {i | wai ̸= wi ∨wai+1 ̸= wi+1 ∨wai−1 ̸= wi−1}, so |Turn(a)| ≤ 3k (since each
index where wa ̸= w is counted at most 3 times in the latter set). ■

Theorem 7.2. Consider a JFA A. If AABS is bounded, then AHAM is bounded.

31

Proof. Consider a word w ∈ Σ∗, we show that if AABS(w) ≤ k for some k ∈ N that
AHAM(w) ≤ (2k+ 1)(k+ 1). Assume AABS(w) ≤ k, then there exists a jump sequence
a = (a0 . . . an+1) such that ∥a∥ ≤ k and wa ∈ L(A). In the following we show that
ai = i for all but (2k + 1)(k + 1) indices, i.e., |i | ai ̸= i| ≤ (2k + 1)(k + 1).

It is convenient to think of the jumping head moving according to a in tandem with
a sequential head moving from left to right. Recall that by Lemma 4.2.1, for every
index i we have that i− k ≤ ai ≤ i+ k, i.e. the jumping head stays within distance k
from the sequential head.

Consider an index i such that ai ̸= i (if there is no such index, we are done). We
claim that within at most 2k steps, A performs a jump of cost at least 1 according to
a. More precisely, there exists i + 1 ≤ j ≤ i + 2k such that |aj − aj−1| > 1. To show
this we split to two cases:

• If ai > i, then there exists some m ≤ i such that m has not yet been visited
according to a (i.e., by step i). Index m must be visited by ai within at most k
steps (otherwise it becomes outside the i− k, i+ k window around the sequential
head), and since ai > i, it must perform a ”left jump” of size at least 2 (otherwise
it always remains to the right of the sequential reading head).

• If ai < i, the there exists some m ≥ i such that m has already been visited by
step i according to a. Therefore, within at most 2k steps, the jumping head must
skip at least over this position (think of m as a hurdle coming toward the jumping
head, which must stay within distance k of the sequential head and therefore has
to skip over it). Such a jump incurs a cost of at least 1.

Now, let B = {i | ai ̸= i} and assume by way of contradiction that |B| > (2k +
1)(k + 1). By the above, for every i ∈ B, within 2k steps the run incurs a cost of
at least 1. While some of these intervals of 2k steps may overlap, we can still find at
least k + 1 such disjoint segments (indeed, every i ∈ B can cause an overlap with at
most 2k other indices). More precisely, there are i1 < i2 < . . . < ik+1 in B such that
ij > ij−1 + 2k for all j, and therefore each of the costs incurred within 2k steps of
visiting ij is independent of the others. This, however, implies that ∥a∥ ≥ k+ 1, which
is a contradiction, so |B| ≤ (2k + 1)(k + 1).

It now follows that AHAM(w) = |{i | wai ̸= wi}| ≤ |{i | ai ̸= i}| ≤ (2k+ 1)(k+ 1).■

Combining Lemmas 7.1 and 7.2 we have the following.

Corollary 7.3. Consider a JFA A. If AABS is bounded, then AREV is bounded.

We proceed to show that no other implication holds with regard to boundedness,
by demonstrating languages for each possible choice of bounded/unbounded semantics
(c.f. Remark 1). The examples are summarized in Table 7.1, and are below.

32

ABS HAM REV Language
Bounded Bounded Bounded (a+ b)∗

Unbounded Bounded Bounded (a+ b)∗a

Unbounded Unbounded Bounded a∗b∗

Unbounded Unbounded Unbounded (ab)∗

Table 7.1: Examples for every possible combination of bounded/unbounded semantics.
The languages are given by regular expressions (e.g., (a+ b)∗a is the language of words
that end with a).

Example 7.0.1. The language (a+ b)∗ is bounded in all semantics. This is trivial, since
every word is accepted, and in particular has cost 0 in all semantics.

Example 7.0.2. The language (a+ b)∗a is bounded in HAM and REV semantics, but
unbounded in ABS. Indeed, let A be an NFA such that L(A) = (a+ b)∗a and consider
a word w ∈ J(A), then w has at least one occurrence of a at some index i. Then, for
the jumping sequence a = (0, 1, 2, . . . , i − 1, n, i + 1, . . . , n − 1, i, n + 1) we have that
wa ∈ L(A). Observe that dH(wa, w) ≤ 2 (since wa differs from w only in indices i and
n), and Turn(a) ⊆ {i, n}, so AHAM ≤ 2 and AREV ≤ 2.

For ABS, however, consider the word abn for every n ∈ N. Since the letter a must
be read last, then in any jumping sequence accepting the word, there is a point where
the jumping head is at index n and the sequential head is at position 1. By Lemma
4.2.1, it follows that AABS(w) ≥ n − 1, and by increasing n, we have that AABS is
unbounded.

Example 7.0.3. The language a∗b∗ is bounded in the REV semantics, but unbounded
in HAM and ABS. Indeed let A be an NFA such that L(A) = a∗b∗ and consider a
word w ∈ J(A), and denote by i1 < i2 < . . . < ik the indices of a′s in w in increasing
order, and by j1 < j2 < . . . < jn−k the indices of b’s in decreasing order. Then, for
the jumping sequence a = (i1 . . . ik j1 . . . jn−k n+ 1) we have that wa ∈ L(A), and
AREV ≤ 2 (since the jumping head goes right reading all the a’s, then left reading all
the b’s, then jumps to n+ 1).

For HAM, consider the word w = bnan for every n ∈ N. The only permutation of
w that is accepted in L(A) is w′ = anbn, and dH(w,w′) = 2n so AHAM is unbounded.
By Lemma 7.2 it follows that AABS is also unbounded.

Example 7.0.4. The language (ab)∗ is unbounded in all the semantics. Indeed, let A
be an NFA such that L(A) = (ab)∗, then by Lemma 7.1 and Corollary 7.3 it suffices to
show that AREV is unbounded.

Consider the word w = bnan for every n ∈ N, and let a = (a0 a1 . . . a2n a2n+1)
such that wa ∈ (ab)∗, then for every odd i we have ai ∈ {n + 1, . . . , 2n} and for every
even i ≤ 2n we have ai ∈ {1, . . . , n}. In particular, every index 1 ≤ i ≤ 2n is a turning
point, so AREV(w) = 2n and AREV is unbounded.

33

34

Chapter 8

Conclusion and open questions

8.1 Conclusion

Quantitative semantics are often defined by externally adding some quantities (e.g.,
weights) to a finite-state model, usually with the intention of explicitly reasoning about
some unbounded domain. It is rare and pleasing when quantitative semantics arise
naturally from a Boolean model. In this work, we studied three such semantics: the
Absolute Distance semantic, the Reversal semantic and the Hamming semantic.

We established decidability for some boundedness problems variants for these se-
mantics, and gave lower bounds for some fragments (see Chapters 4-6).

Curiously, despite the semantics being intuitively unrelated, it turns out that they
give rise to interesting interplay (see Chapter 7).

8.2 An Open question

We argue that boundedness is a fundamental decision problem for the semantics we in-
troduce, as it measures whether one can make do with a certain budget for jumping. An
open question left in this research is existentially-quantified boundedness: whether there
exists some bound k for which ASEM is k-bounded. This problem seems technically
challenging, as in order to establish its decidability, we would need to upper-bound the
minimal k for which the automaton is k-bounded, if it exists. The difficulty arises from
two fronts: first, standard methods for showing such bounds involve some pumping ar-
gument. However, the presence of permutations makes existing techniques inapplicable.
We expect that a new toolbox is needed to give such arguments. Second, the construc-
tions we present for Univ-Param-Boundedness in the various semantics seem like
the natural approach to take. Therefore, a sensible direction for the existential case is
to analyze these constructions with a parametric k. The systems obtained this way,
however, do not fall into (generally) decidable cases. For example, in the HAM seman-
tics, using a parameter k we can construct a labelled VASS. But the latter do not admit
decidable properties for the corresponding boundedness problem. We remark that it

35

is conceptually possible that existential-boundedness is decidable without the bound
being constructive. This, however, seems somewhat unlikely, and we do not have any
reasonable techniques to tackle this problem in a non-constructive manner.

36

Bibliography

[Alm20] Shaull Almagor. Process symmetry in probabilistic transducers. In Founda-
tions of Software Technology and Theoretical Computer Science, 2020.

[AY23] Shaull Almagor and Omer Yizhaq. Jumping automata over infinite words.
In Frank Drewes and Mikhail Volkov, editors, Developments in Language
Theory, pages 9–22, Cham, 2023. Springer Nature Switzerland.

[Bok21] Udi Boker. Quantitative vs. weighted automata. In Paul C. Bell, Patrick
Totzke, and Igor Potapov, editors, Reachability Problems, pages 3–18, Cham,
2021. Springer International Publishing.

[CFM11] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh au-
tomata. Int. J. Found. Comput. Sci., 23:1691–1710, 2011.

[CFM12] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Affine parikh au-
tomata. RAIRO Theor. Informatics Appl., 46:511–545, 2012.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. Springer Publishing Company, Incorporated, 1st edition, 2009.

[FHY21] Szilárd Zsolt Fazekas, Kaito Hoshi, and Akihiro Yamamura. Two-way de-
terministic automata with jumping mode. Theoretical Computer Science,
864:92–102, 2021.

[FPS15] Henning Fernau, Meenakshi Paramasivan, and Markus L Schmid. Jumping
finite automata: characterizations and complexity. In Implementation and
Application of Automata: 20th International Conference, CIAA 2015, Umeå,
Sweden, August 18-21, 2015, Proceedings 20, pages 89–101. Springer, 2015.

[FS17] Paramasivan Fernau and Vorel Schmid. Characterization and complexity
results on jumping finite automata. Theoretical Computer Science, 679:31–
52, 2017.

[KR03] Felix Klaedtke and Harald Ruess. Monadic second-order logics with cardinali-
ties. In International Colloquium on Automata, Languages and Programming,
2003.

37

[LPS14] Giovanna J Lavado, Giovanni Pighizzini, and Shinnosuke Seki. Operational
state complexity under parikh equivalence. In Descriptional Complexity of
Formal Systems: 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 2014. Proceedings 16, pages 294–305. Springer, 2014.

[Moh03] Mehryar Mohri. Edit-distance of weighted automata. In Jean-Marc Cham-
parnaud and Denis Maurel, editors, Implementation and Application of Au-
tomata, pages 1–23, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[MS72] Albert R Meyer and Larry J Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT, volume 72,
pages 125–129, 1972.

[MZ12] Alexander Meduna and Petr Zemek. Jumping finite automata. International
Journal of Foundations of Computer Science, 23(07):1555–1578, 2012.

[NA21] Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-
letter transducers. Log. Methods Comput. Sci., 19, 2021.

[Vor18] Vojtěch Vorel. On basic properties of jumping finite automata. International
Journal of Foundations of Computer Science, 29(01):1–15, 2018.

38

פתוחה בעייה

היא שכן מציגים, שאנו הסמנטיקות עבור מהותית הכרעה בעיית הוא החסם שבעיית טוענים אנו

פתוחה שאלה קופץ. אוטומט ע"י מילה קבלת לצורך מסוים בתקציב להסתפק אפשר האם מודדת

ע"י חסומה הקופץ האוטומט ששפת כך k קיים האם החסם: קיום בעיית היא זה במחקר שנותרה

מלמעלה לחסום נצטרך שלה, הכריעות את לבסס כדי שכן במיוחד, מאתגרת נראית הזו הבעיה .k

ראשית, סיבות: משתי נובע הקושי קיים. הוא אם ,k ע"י חסום האוטומט שעבורו המינימלי k-ה את

תמורות של הנוכחות זאת, עם ניפוח. בטיעון כרוכות כאלה חסמים להצגת סטנדרטיות שיטות

להוכיח כדי חדש כלים בארגז צורך שיש מצפים אנו ישימות. לאֹ להיות קיימות לטכניקות גורמות

כמו נראות השונות בסמנטיקות החסם בעיית עבור מציגים שאנו הבניות בנוסף, כאלה. טיעונים

פרמטרי. k עם הללו הבניות את לנתח הוא הקיום לבעיית הגיוני כיוון לכן, לנקוט. הטבעית הגישה

להכרעה. הניתנים למקרים כלל) (בדרך מסתכמים לא זאת, עם זו, בדרך שמתקבלות המערכות

iii

w קריאת בזמן "מסתובב" שהראש הפעמים מספר היא ρ של העלות הסיבוב בסמנטיקת •
להיפך). או לשמאל מימין לתנועה לימין משמאל מתנועה משתנה הוא (כלומר

שממזערת הריצה מציאת ידי על סמנטיקה כל לפי w המילה של העלות את מגדירים אנו מכן לאחר

העלות. את

בניגוד אולם בוליאניים. כמודלים ולא כמותיים כמודלים קופצים לאוטומטים מתייחסים אנו לפיכך,

ההגדרות מכך, יתרה מהמודל. טבעי באופן נובעות שהגדרנו הסמנטיקות אחרים, כמותיים לאוטומטים

נסתכל ראשית, כעת. מדגימים שאנו כפי לזיכרון, גישות של שונים סוגים ידי על טבעי באופן נובעות

הקלטת. לאורך לנוע שיכול קורא ראש עם קלטת), (לדוגמא, במערך מונח שלה שהזיכרון מערכת על

הערך לסמנטיקת תואמת הקלט בקריאת המושקעת האנרגיה סך ולכן אנרגיה, דורשת הראש הזזת

והדיסק במקומו נשאר הראש מסתובב, דיסק הוא שלה שהזיכרון במערכת זאת, לעומת המוחלט.

הכיוון, בהיפוך היא העיקרית והעלות כיוון, באותו להסתובב להמשיך זול לכן, התנועה. את מבצע

התנועה עלות את ביותר הטובה בצורה תופסת ההיפוך סמנטיקת מנוע. והיפוך עצירה המצריך

לערוך מותר אבל סדרתי, באופן שלה הקלט את שקוראת מערכת על נסתכל לבסוף, הזה. במקרה

של תמורה היא המתקבלת המילה שבסוף כך באחרת, אחת אות החלפת ידי על שלה הקלט את

האמינג. לסמנטיקת מתאימות הנדרשות המינימליות העריכות המקורית. המילה

כמותיות שאלות

קופץ אוטומט בהינתן קובעת השייכות בעיית זו. לסמנטיקה בנוגע בעיות מספר וחוקרים מגדירים אנו

שלוש תחת שלמה NP היא השייכות שבעיית מראים אנו .k כלשהו נתון במספר מוגבלת w מילה אם

הסמנטיקות.

בשפה המילים כל ערכי האם מחליטים קופץ, אוטומט בהינתן החסם: בעיית את גם חוקרים אנו

חסמים ונותנים הסמטיקות בשלוש כריעה זו בעיה כי מראים אנו .k ע"י חסומים שלו (הכמותית)

הבעיה. של ווריאציות למספר תחתונים

סופי אוטומט בונים אנו מהסמטיקות, אחת תחת החסם בעיית של הכריעות את להוכיח מנת על

קטן שמחירן המילים כל שפת את המקבל סדרתי) באופן קלטו את קורא (אשר B דטרמיניסטי לא

לדוגמא, חוקרים. אנחנו אותה הסמנטיקה של מסויימות בתכונות נעזרים אנו B בניית לצורך .k-מ

צעד בכל הקופץ לראש הסדרתי הראש בין המרחק את k ע"י לחסום ניתן המוחלט הערך בסמנטיקת

הקלט. קריאת במהלך

אוטומט אם כי מראים אנו הסמנטיקות: של החסם בעיות בין קשרים מספר גם מציגים אנו במחקרנו

של חסימות דומה, באופן ההיפוך. סמנטיקת תחת גם חסום הוא האמינג, סמנטיקת תחת חסום הינו

המראות דוגמאות גם מציגים אנו המינג. סמנטיקת תחת חסימות גוררת המוחלט הערך סמנטיקת

אחרות. דומות גרירות שאין

ii

תקציר

קופצים אוטומטים

שקורה כפי רציף באופן שלהם הקלט את קוראים כלל בדרך לא-דטרמיניסטיים סופיים אוטומטים

הקלט את לקרוא עשוי קופץ סופי אוטומט זאת, לעומת מצבים. מבוססי החישוביים המודלים ברוב

קופץ אוטומט בדיוק. אחת פעם נקראת אות כל עוד כל לאות, מאות לקפוץ רציף, לא באופן שלו

את מייצג הקלט כאשר היא כזו אחת דוגמה הקלט. לסדר חשיבות אין שבהם במקרים רלוונטי

של יותר תיאורטית מבט מנקודת שלהם. הכמות לגבי לחקור רק רוצים ואנו הזמינים, המשאבים

הפריק תמונת גם המכונה השפות, של הקומוטטיבי הסגור על בהסתכלות מסתכם זה פורמליות, שפות

שלהן.

כמודל עליהם כשחושבים חיסרון מציגים הם ופשוט, אטרקטיבי מודל הם קופצים אוטומטים בעוד

של הקלט לאחסון גישה של פיזי תהליך כעל הראש תנועת על לחשוב שניתן מכיוון זאת למערכות.

אחרים. במקרים מאשר יותר זולה להיות צריכה התנועה מסוימים במקרים לכן, הקופץ. האוטומט

מסביב לקפוץ היכולת קפיצות). (ללא הקלט קריאת במהלך סדרתית בצורה זז הראש כאשר למשל,

"חינם". לבוא צריכה לא היא ולכן פיזית יותר קשה

כמותיות סמנטיקות

אנו למטרותינו הקפיצה. עלות את לכמת המנסות כמותיות סמנטיקות שלוש מציגים אנו בעבודתנו

מילה לקבל יקר כמה תופסים אנו וכך לעלויות, ממילים פונקציה כאל קופצים לאוטומטים מתייחסים

ההבדלים את אלו, סמנטיקות של המאפיינים את לחקור רוצים אנו הראש. לקפיצות ביחס נתונה

אחרות. ותכונות ביניהן

ρ ותהי ,w ומילה A קופץ אוטומט על נסתכל השונות: הסמנטיקות שלוש את בקצרה מציגים אנו

שבהם והאינדקסים המצבים רצף את מציינת שלנו במקרה ρ הריצה .A-ב w של מקבלת ריצה

בודדת. ריצה של העלות את נגדיר תחילה .w-ב ביקרנו

המתקבלת המילה כלומר, ,ρ ידי על המושרה w′ המילה על מסתכלים אנו האמינג, בסמנטיקת •
.w-מ שונה w′ שבהן האותיות מספר היא ρ של העלות אותה. קוראת ρ בסדר w בקריאת

עושה. שהיא הקפיצות אורכי סכום היא ρ של העלות המוחלט הערך בסמנטיקת •

i

המחשב. למדעי בפקולטה אלמגור, שאול ד''ר של בהנחייתו בוצע המחקר

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר זה חיבור מחבר

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

קופצים לאוטומטים כמותיות סמנטיקות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

סלגדו ישי

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2024 יוני חיפה התשפ"ד סיון

קופצים לאוטומטים כמותיות סמנטיקות

סלגדו ישי

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Organization

	2 Preliminaries
	2.1 Permutations
	2.2 Nondeterministic Finite Automata
	2.3 Jumping Automata

	3 The Quantitative Semantics
	3.1 Introduction
	3.2 The Semantics
	3.2.1 The Absolute Distance Semantics
	3.2.2 The Reversal Semantics
	3.2.3 The Hamming Semantics

	3.3 Quantitative Decision Problems

	4 The Absolute Distance Semantics
	4.1 The Membership Problem for ABS
	4.2 Decidability of Boundedness Problems for ABS
	4.3 PSPACE-Hardness of boundedness for ABS

	5 The Reversal Semantics
	5.1 The Membership Problem for REV
	5.2 Decidability of Boundedness Problems for REV
	5.3 PSPACE-Hardness of Boundedness for REV

	6 The Hamming Semantics
	6.1 The Membership Problem for HAM
	6.2 Decidability of Boundedness Problems for HAM
	6.3 PSPACE-Hardness of Boundedness for HAM

	7 Interplay Between the Semantics
	8 Conclusion and open questions
	8.1 Conclusion
	8.2 An Open question

	Bibliography
	Hebrew Abstract

